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Preface

Foreword

This proceedings is a collection of the papers presented during the 15th Biennial
International conference on Artificial Evolution, EA1 2022 held in Exeter (UK).
This conference is the first in the series to be held in the UK, with previous
iterations held across France in Mulhouse (2019), Paris (2017), Lyon (2015),
Bordeaux (2013), Angers (2011), Strasbourg (2009), Tours (2007), Lille (2005),
Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest
(1995) and Toulouse (1994). The conference was due to take place in 2021 but
was postponed due to the ongoing effects of the COVID-19 pandemic.

We sought original contributions relevant to Artificial Evolution, including,
but not limited to: evolutionary computation, evolutionary optimization, coevo-
lution, artificial life, population dynamics, theory, algorithmic and modeling,
implementations, application of evolutionary paradigms to the real world (in-
dustry, biosciences. . . ), other biologically-inspired paradigms (swarm, artificial
ants, artificial immune systems, cultural algorithms. . . ), memetic algorithms,
multi-objective optimization, constraint handling, parallel algorithms, dynamic
optimization, machine learning and hybridization with other soft computing
techniques. We received high quality submissions spanning many of these areas,
including theoretical advances in tree-based methods, swarm intelligence and
multi-objective evolutionary algorithms in addition to a number of topical fields
of application in machine learning, electric vehicles, routing and bioinformatics.

Each submitted paper was reviewed by members of the International Pro-
gram Committee and selections were based on a minimum of two such reviews.
The aim is to publish a selection of the best papers presented at the conference
in Springer LNCS as in previous years (see LNCS volumes 1063, 1363, 1829,
2310, 2936, 3871, 4926, 5975, 7401, 8752, 9554, 10764, 12052).

The success of EA 2022 is as a result of team work and I would like to express
my gratitude to:

– Dr Mathias Kern (BT plc) and Prof. Emma Hart (Napier) for agreeing to
give keynote talks;

– The Program Committee members for their rigorous work: the high quality
of the selected papers demonstrates their attention to detail;

– The Organizing Committee for their efficient work and kind availability, in
particular the local team;

– The members of the Steering Committee for their valuable assistance;
– Pierrick Legrand for the administration of the conference website;
– Lhassane Idoumghar for financial administration;

1 As for previous editions of the conference, the EA acronym is based on the original
French name “Évolution Artificielle”.



– Laetitia Jourdan and Patrick Siarry for publicity;
– Pierrick Legrand, Arnaud Liefooghe, Julien Lepagnot and Nicolas Mon-

marché for managing submissions and for the edition of the proceedings.
– Nick Davies and Ben Samuels for their assistance in the local arrangements

I would also like to take this opportunity to thank the following partners
whose support was instrumental in delivering the conference: the Faculty of
Environment, Science and Economy at the University of Exeter, Event Exeter,
the University of Exeter and Association EA.

Finally, we are as always deeply grateful to all authors who submitted their
research work to the conference, and to all attendees who make the conference
such a vibrant venue for the exchange of ideas. The combination of scientific
quality and the convivial atmosphere of this series of conferences provides a
stimulating and inclusive environment for all evolutionary algorithm researchers.

Prof. Edward Keedwell

EA 2022 Chair
Exeter, Devon, UK
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Programme

Venue

The conference, drinks reception and gala dinner will take place in Reed Hall,
Streatham Dr, Exeter EX4 4QR.

Talks

30 minutes is allocated for each talk and speakers are requested to talk for ap-
proximately 20 minutes with 10 minutes for questions and handover. Talks
should be given in person wherever possible, but facilities for remote participa-
tion will be made available where necessary. Please prepare your talk in PDF or
Powerpoint formats and hand them to the session chair before your session. If
you would like to use your own computer or a different format, please e-mail the
local chair, Ed Keedwell E.C.Keedwell@ex.ac.uk in advance.

Drinks Reception & Walking Tour

A complementary drinks and canapes reception will be held in theWoodbridge
Room at Reed Hall on the evening of Monday 31st October at 5pm. This will
be followed by an (optional) Halloween ‘Ghosts and Legends’ walking tour of
Exeter. Participation is included in your registration, but we will need to walk
from the conference venue to the Cathedral (approx. 15-20 minutes). Please
bring appropriate footwear and clothing in case it is raining (it is England in
Autumn!!).

Gala Dinner

The gala dinner will be held in the Woodbridge Room at Reed Hall on the
evening of Tuesday 1st November. The bar will be open from 6pm with dinner
served at 7pm.

Excursion

The excursion will take place from 1pm to 4pm on Wednesday 2nd November
from Exmouth Marina EX8 1FE. Transportation to and from Exmouth is
included in your registration, however you are welcome to make your own way
there.

This will be a boat trip along the Exe Estuary with a BBQ lunch onboard.
The vessel has covered and uncovered sections, so please bring appropriate cloth-
ing (i.e. warm and waterproof clothing and appropriate footwear).

mailto:E.C.Keedwell@ex.ac.uk


Monday 31st October 2022
09:00 – 09:30 Registration, coffee and pastries Landing
09:30 – 11:00 Session #1.1 – Tree-Based Approaches Upper Lounge
11:00 – 11:30 Coffee Landing
11:30 – 13:00 Plenary Talk #1 – Emma Hart (Remote) Upper Lounge
13:00 – 14:00 Buffet Lunch Landing
14:00 – 15:00 Session #1.2 – Machine Learning Upper Lounge
15:00 – 15:30 Cream Tea Landing
15:30 – 16:30 Session #1.3 – Electric Vehicle Applications Upper Lounge
16:30 – 17:00 Demonstration Walter Daw Room

Augmented Evolutionary Intelligence
17.00 Drinks Reception Woodbridge Room
18.45 Ghosts and Legends Halloween Tour Exeter Cathedral

Tuesday 1st November 2022
09:00 – 09:30 Registration, coffee and pastries Landing
09:30 – 11:00 Session #2.1 – Swarm Intelligence Upper Lounge
11:00 – 11:30 Coffee Landing
11:30 – 13:00 Plenary Talk #2 – Mathias Kern Upper Lounge
13:00 – 14:00 Buffet Lunch Landing
14:00 – 15:00 Session #2.2 – Multi/Many Objectives Upper Lounge
15:00 – 15:30 Cream Tea Landing
15:30 – 16:30 Session #2.3 – Bioinformatics Upper Lounge
16:30 – 17:00 Demonstration Walter Daw Room

Neural Network for Guitar Amplifier Emulation
18:00 – 22:00 Gala Dinner Woodbridge Room

Wednesday 2nd November 2022
09:00 – 09:30 Registration, coffee and pastries Landing
09:30 – 10:30 Session #3.1 – Routing/Path Planning Upper Lounge
10:30 – 11:00 Closing Session Upper Lounge
11:00 – 11:30 Coffee Landing
11:30 – 12:00 Travel to Exeter St Davids

Convene at front of Reed Hall
12:15 – 13:00 Coach to Exmouth Marina
13:00 – 16:00 Exe Estuary Boat Trip & BBQ
16:00 – 17:00 Coach back to Reed Hall
17:00 Close

14



Plenary Talks

15



16



Plenary Talk #1

Emma Hart, Edinburgh Napier University, UK

An Evolutionary Approach to the Autonomous Design and Fabrica-
tion of Robots in Unknown Environments

Abstract

Robot design is traditionally the domain of humans — engineers, physicists, and
increasingly AI experts. However, if the robot is intended to operate in a com-
pletely unknown environment (for example clean up inside a nuclear reactor)
then it is very difficult for human designers to predict what kind of robot might
be required. Evolutionary computing is a well-known technology that has been
applied in various aspects of robotics for many years, for example to design con-
trollers or body-plans. When coupled with advances in materials and printing
technologies that allow rapid prototyping in hardware, it offers a potential solu-
tion to the issue raised above, for example enabling colonies of robots to evolve
and adapt over long periods of time while situated in the environment they have
to work in. However, it also brings new challenges, both from an algorithmic and
engineering perspective.

The additional constraints introduced by the need for example to manufac-
ture robots autonomously, to explore rich morphological search-spaces and de-
velop novel forms of control require some re-thinking of “standard” approaches
in evolutionary computing, particularly on the interaction between evolution
and individual learning. I will discuss some of these challenges and propose and
showcase some methods to address them that have been developed in during
the ARE project. Finally, I will touch on some ethical issues associated with the
notion of autonomous robot design, and discuss the potential of artificial evolu-
tion to be used as a tool to gain new insights into biological evolving systems.

Bio

Professor Emma Hart has worked in the field of
Evolutionary Computing for over 20 years on a
range of applications ranging from combinato-
rial optimisation to robotics, where the latter
includes robot design and swarm robotics. Her
current work is mainly centred in Evolutionary
Robotics, bringing together ideas on using ar-
tificial evolution as tool for optimisation with
research that focuses on how robots can be made to continually learn, improving
performance as they gather information from their own or other robots’ experi-
ences. The work has attracted significant media attention including recently in
the New Scientist, and the Guardian. She gave a TED talk on this subject at
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TEDWomen in December 2021 in Palm Springs, USA which has attracted over 1
million views since being released online in April 2022. She is the Editor-in-Chief
of the journal Evolutionary Computation (MIT Press) and an elected member
of the ACM SIG on Evolutionary Computing. In 2022, she was honoured to be
elected as a Fellow of the Royal Society of Edinburgh for her contributions to
the field of Computational Intelligence.
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Plenary Talk #2

Mathias Kern, British Telecommunications, UK

Optimisation Challenges at BT

Abstract

TBA

Bio

Dr. Mathias Kern received his MSc and PhD
in Computer Science from the University of
Essex, UK, in 1998 and 2006, respectively. He
is currently Senior Research Manager for sus-
tainable resource management and optimisa-
tion in the Applied Research team of BT, UK.
He is an experienced industrial researcher and
strong advocate for both Artificial Intelligence
and Operational Research technologies and the
way they interact and can be applied to real-
life problems, with a particular focus on sus-
tainable operations to help BT achieve its net-
zero ambitions. He is an active member of the Operational Research Society and
The Charted Institute for IT (BCS) and represents BT on the OR Society’s
Analytics Development Group, the Heads of OR and Analytics Forum and the
BCS Specialist Group on Artificial Intelligence committee.
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Session #1.1
Monday 31st October, 09:30 – 11:00
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On the Active Use of an ND-Tree-Based Archive
for Multi-Objective Optimisation

Jonathan E. Fieldsend[0000−0002−0683−2583]

University of Exeter, Exeter, UK
J.E.Fieldsend@exeter.ac.uk

Abstract. A number of data structures have been proposed for the stor-
age and efficient update of unconstrained sets of mutually non-dominating
solutions. The recent ND-Tree has proved an effective data structure
across a range of update environments, and may reasonably be consid-
ered the state-of-the-art. However, although it is efficient as a passive
store of non-dominated solutions — which may be extracted at the end
of an optimisation — its design is ill-suited to being an active source of
parent solutions to directly exploit during a optimisation run. We intro-
duce a number of modifications to the construction and maintenance of
the ND-Tree to facilitate its use as an active archive (source of parents)
during optimisation, and compare and contrast the run-time performance
changes these cause (and discuss their drivers). Illustrations are provided
with data sequences from a tunable generator and also a simple evolu-
tion strategy — but we emphasise such data structures are optimisation
algorithm agnostic, and may be effectively integrated across the range of
evolutionary (and non-evolutionary) optimisers.

Keywords: Data structures · Real-time statistics · Real-time analysis ·
Computational efficiency.

1 Introduction

In the 1990s evolutionary multi-objective optimisation (EMO) took a large step
forward with the realisation that a set of non-dominated solutions could be effec-
tively exploited during the search process, either as a constrained size secondary
archive or by preferentially selecting non-dominated solutions identified and pre-
served in a single search population (see e.g. [7, 10, 21]). Thus, algorithms started
maintaining an active approximation to the Pareto set during their search. How-
ever, it was also recognised that a passive archive representing the best approx-
imation to the Pareto front found over the course of an optimisation run was
often also required [20], which by its nature needed to be unconstrained in size.1
This is because relying on a constrained size approximation (or the best solutions
in a final search population) typically leads to the return of a set of solutions
1 In some practical examples where evaluation is very cheap this may not be feasible
if the approximation set cardinality is vast, though as shown here modern data
structures can comfortable deal with archive sizes of multiple hundreds of thousands.
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2 J. E. Fieldsend

which may be mutually non-dominating amongst themselves, but which include
members who are in fact operationally worse (dominated) when all solutions vis-
ited in the search process are considered. This was shown theoretically in [9] and
empirically in [6] for a size bounded archiver – with the approximation shown to
be moving backwards and shrinking over time. Later work (e.g. [15]) has shown
similar issues exhibited across many other bounded archiving algorithms.

To support the storage of an unconstrained approximation set, many spe-
cialised data structures to store mutually non-dominating sets of solutions have
been developed. These include Dominated and Non-Dominated Trees [4, 6]; Quad
Trees 1-3 [17, 16]; Dominance Decision Trees [18]; Bi-objective Trees (or Mak_
Trees) for two-objective problems [1]; the M-front [3]; the BSPTree [8]; and most
recently the Non Dominance Tree (ND-Tree) [11] (for which a variant has also
been recently developed with re-balancing [13]). We have compared many of
these data structures empirically over a range of point generation scenarios [5],
and found the ND-Tree to consistently equal or better the run-time performances
of the alternatives — on two very different computational architectures — often
realising several orders-of-magnitude improvements in run-time.

Related to the issue of constrained size archives holding dominated solutions,
work on EMO comparison has shown that contrasting optimiser performance in
terms of the non-dominated set of all solutions visited during a search can lead to
different algorithm rankings than comparing the final populations/bounded size
approximations [19], and as such an unconstrained archive is a better reflection
of an optimiser’s search capability. However, such comparison necessitates the
storing of a potentially large passive archive, which specialised data structures
are much better suited to than, e.g., a simple linear list. However, the use of
unconstrained archives in an active rather than passive fashion (e.g. as a source of
parents in evolutionary computation to help drive the optimisation process itself)
is much less explored, and typically bounded size archives are still employed for
this.

In this work we are concerned with modifying the ND-Tree in order to make
it amenable for use as an active rather than passive unconstrained archive, and
demonstrate the run-time performance changes that such necessary modifica-
tions cause. Leading from this, the main contributions of this work are:

– We identify the subroutines in the ND-Tree construction and maintenance
algorithms which exhibit poor computational complexity during operations
likely to occur regularly when used as a source of parent solutions as an ac-
tive archive. These are the size() operation, which is recursive, and would
be regularly called when sampling uniformly randomly from the set, and the
maintenance of the hyperrectangle bounds (ideal and nadir estimates) for
each subtree, which are loose rather than exact in the standard ND-Tree.
Exact bound values are however required if sampling based on neighbour-
hood size.

– We generate two versions of the ND-Tree – one which caches subtree coverage
at the nodes and is therefore burdened with the additional computational
cost of updating these values, but for which the call to size() becomes O(1);
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On the Active Use of an ND-Tree-Based Archive 3

Algorithm 1 Updating a non-dominated archive A with x (no duplicates)
Require: A . The current non-dominated set of solutions
Require: x . A new solution to check against A
1: if @x′ ∈ A |x′ � x then . If x is not dominated or operationally equal
2: A := A \ {x′ ∈ A |x ≺ x′} . Remove any members of A dominated by x
3: A := A ∪ {x} . Add x to non-dominated set
4: return A

and a second variant where exact bounds are kept at each node, enabling
the exact tracking of the minimum bounding axis-parallel hyperrectangle
containing the points in the subtree rooted at a node, and its hypervolume.

– We demonstrate the empirical run-time performance of these two variants in
comparison to the standard ND-Tree, both in a baseline passive archive sce-
nario (to illustrate the additional computational cost of these changes), and
in simulations of active use (where regular draws are made from the archive).
These are conducted across a range of simulated data stream properties, and
from simple optimiser runs.

The rest of the paper proceeds as follows. In Section 2 the Pareto archive
updating problem is formally described, and a high-level description of the ND-
Tree is presented. Note, due to space limitations we omit most low-level technical
details of the data structure and its formal subroutines, but direct the reader to
the original work [11]. In Section 3 we detail an empirical comparison of these
implementations on a range of problems. The paper concludes in Section 4 with
a discussion and highlights future work directions in this area.

2 Pareto archive updating

Without loss of generality, we concern ourselves with multi-objective minimisa-
tion problems. Given a feasible search space X , a design x from this space is
said to dominate another design x′, which we denote as x ≺ x′, if it is no worse
on all m assessment criteria, fi(x) (i.e. fi(x) ≤ fi(x′)∀i), and better on at least
one. A design x is said to weakly dominate another design x′, denoted x � x′,
if it is no worse on all assessment criteria. The set of Pareto optimal solutions
(the Pareto set) is defined as P = {x ∈ X | @x′ ≺ x, x′ ∈ X}. The image of P
under f is known as the Pareto Front, F . Note – due to many to one mappings,
the cardinality of the Pareto Set may be larger than that of the Pareto Front.

As a multi-objective optimiser searches across X it typically maintains an
approximation to P, called its approximation set (or Pareto archive, A). The task
of maintaining this set is commonly referred to as the dynamic non-dominance
problem [18], and is summarised in Algorithm 1.

2.1 Archiving limitations

Early work in the EMO field identified the various issues caused by truncating an
approximation archive [9, 6], and more recent research has highlighted the change
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4 J. E. Fieldsend

in relative performance of algorithms that is observed when unconstrained ap-
proximation sets are tracked [19], furthermore even quite simple sequences can
induce pathological behaviours in popular (bounded size) archiving approaches
[14]. As such, it is best practice to at least keep a passive unconstrained archive
[20]. From a practical point of view, even if a restricted set will be consid-
ered for presentation to the problem owner, selecting from an unconstrained set
means the problem owner is guaranteed only to consider solutions which are
non-dominated by any other designs found during the optimisation run.

We now give a high-level overview of the ND-Tree and its properties.

2.2 The Non Dominance Tree (ND-Tree)

The ND-Tree of Jaszkiewcz and Lust [11] is composed of nodes, with each interior
node having 1 to k children (usually k = m − 1 is chosen). Each leaf holds
a set of solutions (designs). This set is size bounded and breaching this size
limit leads to node splitting, etc. Only leaves hold solutions, but nodes hold
summary information about the subtree they root, and the ranges of the designs
the subtree covers (in objective space).

The tree is constructed such that each node represents a subset of the non-
dominated front which lies within a hyperrectangle defined by the subset’s ap-
proximate nadir point, ŷ+, and ideal point, ŷ−, (artificial points which approx-
imate the worst values for each objective and the best values for each objective
derived from the covered point set). These are stored as node attributes. Specifi-
cally, for node covering the set S of designs (the union of the sets of the children
in the leaves of the subtree rooted at the node), ŷ+i ≥ max fi(x),∀x ∈ S and
ŷ−i ≤ min fi(x),∀x ∈ S. Each interior node has a set of children (usually up to
m+1), and each leave has a bucket of solutions (this capacity is user defined, but
most studies use 20). The ideal and nadir are approximate rather than exact in
the ND-Tree for computational efficiency — if a dominated solution is removed
from a leaf, these bounds are not updated in the leaf (or the interior nodes which
reach it), the bounds are only updated on insertion if a new point has smaller
values than in the approximated ideal, or larger values than the approximated
nadir in the leaf into which it is inserted (and this update is cascaded to its
parent chain of nodes). There is no guarantee an inserted solution will be placed
in any leaf where it instigated removal(s), and indeed a single new solution in-
sertion may require removals in multiple leaves and/or cause removal of multiple
entire subtrees to maintain the non-dominated property required in the set as a
whole.

The estimated nadir and ideal locations are used to identify whether new
solutions need to be compared to any of the designs covered by the node. A
putative new solution x dominated by the nadir point of a node will be dominated
by all members covered by that node (and so x can be immediately discarded).
Conversely, if x dominates the ideal point it will dominate all members covered
by the node (and must be accepted into the non-dominated set, and the subtree
rooted at the node removed). If x is mutually non-dominating with respect
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ŷ−

ŷ+
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Fig. 1. Left: Illustration of a node property in the ND-Tree. A node covers a set of
non-dominated points, for which the approximated ideal and nadir vectors are shown
ŷ− and ŷ+. If a new solution x is found which dominates ŷ− then the node and the
subtree beneath it can be discarded. If x is dominated by ŷ+, then x can immediately be
discarded. If however ŷ− ⊀ x and x ⊀ ŷ+, then no further processing is needed on the
node (as all points it covers must be mutually non-dominated with respect to x). The
contents of the node only need to be compared directly to x if none of the conditions
above hold. Right: Illustration of a node property in an ND-Tree maintaining exact
ideal and nadir points at each node. Note the dominates, dominated and incomparable
regions are larger than that illustrated in the left example, meaning fewer putative
solutions will need to be checked against the node contents. (N.B., as illustrated when
m = 2 stored solutions lie in the corners of the tight bound axis parallel hyperrectangle
which are unoccupied by y− and y+. This is not the case in general when m > 2, hence
regions labelled “may dominate some” and “some may be dominated” which otherwise
appear to completely dominate/be dominated when illustrated for m = 2.)

to both the approximated ideal and the nadir points, it is also mutually non-
dominating with respect to all solutions covered by the corresponding node, so
the subtree needs no further comparison. An illustration of these relations in
objectives space for the designs covered by a node is provided in Fig. 1 (left).

As one traverses down the tree, the volumes covered by the internal nodes
decrease, and the corresponding ideal and nadir locations shift, until a leaf is
reached containing a set of solutions residing in the objective space volume de-
fined by the hyperrectangle defined by the leaf’s ideal and nadir. These solutions
all need to be compared to x (until the first is found which dominates x, or the
last is processed).

2.3 Modifications for an active use ND-Tree

The ND-Tree is designed to be efficient and effective as a store of a non-dominated
set, but it is not efficient in its standard configuration as a source of parents for
active use in an optimiser.
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Accessing the size(): Each node holds the (estimated) nadir, ideal and midpoint
of the axis-parallel hyperrectangle holding the designs it covers, however it does
not store how many designs it covers. Instead, a recursive call is used that
traverses the tree and sums the set sizes in each leaf. Having this information
cached at each node is practically useful in the active use of an archive, as
in many scenarios it is necessary to draw a member uniformly at random. To
accomplish this, one would traverse the tree, starting at the the root, and select
a child in proportion to the number of designs it covers, until a leaf is reached,
where a design stored in the leaf can be picked at random. However, if the
number covered is stored at each node, then any time a design is added, this
will require a subroutine to increment the count in the leaf and all nodes which
lead to it. Similarly, any time a design is dominated and removed (or an entire
subtree removed) then this needs propagating up to all covering nodes. In our
first variant of the data structure we implement such changes. Note: this also
increases the memory footprint of the structure by number of nodes × integer
type memory size. For each successful add(x) call there will be an extra L integer
addition operations needed (where L is the number of levels above the leaf with
the new design), and for each individual removal there are L integer subtraction
operations needed (where L is the number of levels above the leaf with the
removed design, or above the detached subtree).

Exact nadir, ideal and midpoint: Having exact nadir and ideal values at nodes
(and by extension an exact midpoint) also has a benefit for random sampling.
When taking a uniformly random selection, no consideration is made regard-
ing the distributional bias of the stored points. However, commonly in EMO
approaches, we want to have an even distribution of parents sampled across
a front surface/volume, rather than biasing them in any particular objective
combinations. With accurate bounds on the volumes the designs reside in (in
objective space) samples can be drawn based on this volume. That is, the tree
can be traversed not probabilistically based on the number of designed covered
by a node, but in relation to the proportion of hypervolume lying between the
ideal and nadir) — i.e. probabilistically based on the volume which the designs
span under each node. It should also be remarked that, although it brings extra
maintenance cost, maintaining exact ideal and nadir points means the average
number of nodes a new solution needs comparing to when evaluating whether it
should be added to the set will decrease (see right illustration in Fig. 1). This
means it is not immediately clear if it will be more or less costly using an exact
rather than approximate nadir and ideal ND-Tree, even when using the archive
exclusively in a passive scenario. In terms of modifications to the core algorithm,
whenever a design is removed it needs comparing to the ideal and nadir points
saved in the leaf. If it is equal on any of the values (and no other leaf member
also equals them), then it defines that dimension, and it will need updating at
the leaf (based on the remaining set members), and the change will need prop-
agating up the tree until either a parent node is reached which has a smaller
(ideal) or larger (nadir) on the respective index (in which case it is being de-
rived from a different child node), or another node covered by the parent has the
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same minimum/maximum, or the root has been reached and updated. This can
potentially require a significant number of value comparisons for a single design
insertion/removal.

We now report various run-time comparisons of these implementations un-
der different data sequence scenarios and usage scenarios. (Implementations are
available at github.com/fieldsend, along with scripts to recreate all results.)

3 Empirical results

We conduct our empirical work on a laptop running O/S X. The machine speci-
fications are: 2.8 GHz Quad-Core Intel Core i7 CPU. L1 cache: 32KB, L2 cache:
256KB, L3 cache: 2MB (per core), RAM 16 GB 1600 MHz DDR3.

In all experiments 30 (paired) runs are taken. Figs. 2–7 show mean time
taken to update a data structure to the sample/generation indicated. The shaded
background on a panel indicates when a data structure with a lower mean is
significantly better than another with a higher mean. Lowest blocks: lowest mean
vs second lowest; middle blocks: lowest mean versus third; upper blocks: second
versus third (Wilcoxon signed ranks test with Bonferronoi correction, α = 5%).

3.1 Simulation runs

In our first set of experiments we employ the protocol used in [8, 5] for generation
of objective vectors from controlled analytical distributions, which removes the
stochastic element of the optimiser from the results. Archives are constructed
from a sequence of N normally distributed objective vectors. Nd of these are
dominated, and Nnd are non-dominated (N = Nd + Nnd). The tth objective
vector yt is drawn from:

yt ∼ N
(
dtN

t
1, I− 1

m
11>

)
(1)

where I ∈ Rm×m is the identity matrix and 1 = (1, 1, . . . , 1)> ∈ Rm is the vector
of all ones. dt controls the systematic improvement of points, and takes one of
two values: 0 with a probability of cN ′td /(N − t), where N ′td is the number of
dominated points still to draw in the sequence, otherwise dt is assigned a value
> 0 (here we use 1.0). c > 1 results in more dominated points earlier in the
sequence, and with c < 1 there are more dominated points later in the sequence.
We investigate c = {0.9, 1.1} here, and we measure the CPU time dedicated to
the execution thread when interacting with the data structure, but exclude all
other time costs (e.g., the cost of sampling from the analytical distribution).

3.2 Simulations of usage in passive scenarios

In our first set of experiments we simulate usage in a passive environment: we
are interested in examining the run-time cost differences in the ND-Tree imple-
mentations when they are solely being used for storage. m ranges from 3 to 20
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Fig. 2. Mean (cumulative) time taken to update data structure per sample. Results on
analytical function, c = 0.9. Log scales on both axis.

with various configurations of the generator. All data structures get the same
sequence set for each run (i.e. are paired), and results are shown in log–log plots.

The panels in Figure 2 show the run-time characteristics of the different data
structures for c = 0.9, and the panels in Figure 3 show the run-time characteris-
tics of the different data structures for c = 1.1. For both c = 0.9 and c = 1.1 and
across scenario configurations the baseline ND-Tree and cached node size ND-
Tree exhibit very similar run-time performances, indeed only for m = 3, c = 0.9
do the average performances vary substantially, but by 104 samples they have
converged, and the different variants required between 10−5 and 10−4 seconds
per sample update on average across a run.

For the ND-Tree with exact ideal and nadir values the run-time differences
are substantial for fewer objectives (3 and 5) and smaller total archives sizes (210
and 214), outside of these though the timing differences are smaller (though still
statistically significant at later stages). Where there are large variations it would
appear due to the properties of these configurations – with Nd = {210, 214}
there are more non-dominated solutions in the sequences, which means more
adjustments to the bounds are likely needed as solutions are more regularly
added, and with the lower m sizes the trees will be deeper (as each interior
node has up to m − 1 children, and therefore there will tend to be a longer
“chain” of nodes whose y− and y+ need updating). Nevertheless, even in the
worse configurations, the average update/sample over the run only reaches 10−3
seconds by the end for the ND-Tree with exact bounds at nodes.
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Fig. 3. Mean time taken to update data structure per sample. Results on analytical
function, c = 1.1.

To illustrate the performance of the data structures in an optimisation en-
vironment, we also employ sequences generated from a simple (1+1)–Evolution
Strategy (ES), as set out in [5]. The optimiser is based on the PAES algorithm
of [12], but rather than using a gridded constrained archive, an unconstrained
archive is used, which is stored in the ND-Tree. The parent has a single design
variable mutated with Gaussian noise, with width 0.1 (with rejection sampling
for boundary violations). If the child is not weakly dominated by A, the child
replaces the parent at the next generation.

We run the ES with each data structure on a problem 30 times, plotting the
average update timings. DTLZ1 and DTLZ2 from [2] are used as test problems,
as they usefully span two extremes in behaviour. In DTLZ1, the objective values
of random design vectors are many orders of magnitude worse than those of the
Pareto set. Also, the problem has many deceptive fronts — so the approxima-
tion set tends to repeatedly converge, expand, and then rapidly contract once a
better local front is found. In contrast DTLZ2 is designed such that random so-
lutions are only a couple of times worse than Pareto optimal ones on the quality
criteria. Furthermore, there is a single multi-objective basin of attraction in the
problem, so the approximation set tends to steadily grow over time, rather than
having seismic changes in size. For both problems we set the number of design
parameters as m− 1 + 9.

Figure 4 shows how the data structures compare – interestingly, there is
little consistency in differences in the three configurations across these scenarios,
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Fig. 4. Mean (cumulative) time taken to update data structure up to marked (1+1)–ES
generation. DTLZ1 (top row) and DTLZ2 (bottom row).

with relative performance often swapping between the implementations on (and
between) problems. This in part may be due to the archive sizes (i.e. |A|). In
the optimiser runs this ranged from 20,000 to 120,000 by the end (for small to
large m) compared to the generator scenarios which were populating archives in
excess of a quarter of a million non-dominated members by the end of a run in
some configurations. The clear performance separation we see in the later stages
of the analytical sequences may be greatly influenced by the ND-Tree capacity
and depth reached.

3.3 Usage in active scenarios: Sampling at random from the archive

We now contrast the behaviours of the variants for sampling from the archive in
a prototypical active archive scenario. In these set of experiments we interleave
a drawing a single member of the set, with each update in the synthetic data
sequence and the ES–(1+1) runs. These draws are uniformly at random from the
standard ND-Tree, and the ND-Tree with cached node sizes, and in proportion
to the hypervolume spanned by the nodes in the ND-Tree variant with exact
ideal and nadir points tracked. Specifically, in the sequence if there are N data
points checked for adding in turn to the archive, then after each adding call
to the data structure one member is drawn (without removal) from the data
structure, simulating parent draws (so N draws by the end of the run). Note,
we do not modify the data entry sequence for any of the runs (i.e. we do not
“use” the drawn parent) — this is to ensure the computational timing results are
unaffected by any induced changes in search behaviour due to particular parent
draws which would change the membership of the archives being compared for
each group of runs. This is because here we are purely concerned with the change
in computational cost of using the data structure implementations in an “active”
rather than “passive” archive setting on the same input data sequence.
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Fig. 5. Mean (cumulative) time taken to update data structure per sample with draw
from archive uniformly at random at each time step. Results on analytical function,
c = 0.9.

Results are shown in Figs. 5 and 6 for the synthetic sequence data from
the generator. The time cost benefits of caching the number covered at each
node compared to the standard ND-Tree when draws are regularly taken is clear
across all simulation scenarios (though the relative improvement diminishes with
increasing number of objectives). The variant storing the coverage number is con-
sistently faster after 103 samples, ranging from 1-2 orders of magnitude speed up
by the end of the run for m = 3 through to at least twice as fast for m = 20. For
the version tracking the ideal and nadir points exactly, the computational cost
in the active use scenario is similar to the baseline ND-Tree, but the samples
drawn are now less influenced by a biased distribution of the archived points in
objective space. Interestingly the cost of recursively calculating the node cov-
erage in the standard configuration turns out to be similar in practice to the
additionally maintenance cost of keeping the bounds exact — with the exact
bound variants run-time being very similar to the standard ND-Tree, usually
the standard approach is a little faster in the earlier stages of a run, but by later
in runs the exact bound variant becomes quicker.

Fig. 7 shows the results for the two DTLZ problem configurations with the
interleaved draws. We see a similar trend as with the analytic functions – the
ND-Tree with stored coverage attributes is significantly faster after 1,000–2,000
evaluations onwards, and reaching between 1 and 2 orders of magnitude speed up
over standard ND-Tree configuration by 250,000 evaluations. The variant with
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Fig. 6. Mean (cumulative) time taken to update data structure per sample with draw
from archive uniformly at random at each time step. Results on analytical function,
c = 1.1.
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Fig. 7. Mean (cumulative) time taken to update data structure and draw a random
member at each (1+1)–ES generation. DTLZ1 (top row) and DTLZ2 (bottom row).

exact node bounds is also more efficient that the standard data-structure, with
2–8 times speed up by the end.
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4 Conclusions

In this work we set out modifications to the ND-Tree, to enable its effective use
as an active unconstrained archive in multi-objective optimisation. We compare
the run-time performance of two modified variants over a range of scenarios, both
synthetic, and from optimiser run histories. We find that storing the number of
designs covered by each node as an extra attribute, and dynamically updating
it, has only marginal run-time cost implications for the maintenance of the data
structure as a whole. Furthermore, on the analytically generated sequences and
optimiser histories considered it drastically improved the run-time performance
of sampling uniformly from the front (often multiple orders of magnitude faster).

Storing exact nadir and ideal points at nodes rather than approximations can
cause a performance degradation in some scenarios, but not punitively so – with
average update costs still around 1-10ms at archive sizes in excess of quarter of
a million. Storing exact values however can mitigate the distributional bias that
uniformly sampling from an unconstrained archive may lead to if the relative
locations of the designs are not considered, and when used in an active rather
than passive setting it ends up quicker than the standard approach. In some
passive storage situations storing exact nadir and ideal points is also seen to
make the data structure faster overall, but not consistently.

We look forward to exploring the impact of using unconstrained archives as
a source of parents in EMO runs in practical settings, and in particular investi-
gating whether the structures will be amenable for extension to other common
forms of parent draws (e.g. when using decomposition rays).
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Abstract. Hearing Loss affects an ever-growing number of people of all
ages. It can occur due to a multitude of sources such as genetics, diseases,
ageing, or noise exposure. If not treated properly and timely it may lead
to socioeconomic difficulties such as poor job performance, hardship in
finding a job, and social isolation.
In this work we propose HyTEA, a framework based on Evolutionary
Computation to create Decision Tree like models to identify people that
are likely to be diagnosed with hearing loss, so they can be called for
screening by a health professional. To achieve this, we will use historic
data about patients who have been diagnosed with hearing problems and
complement it with publicly available socioeconomic information. The
models created should provide some understanding about the reason a
decision is being made since this is key for the health professionals.
To build Decision Trees we usually rely on greedy induction algorithms
which may result in overfitting of the training data. To counter this
problem, HyTEA uses a combination of two Evolutionary Algorithms,
namely Structured Grammatical Evolution and Differential Evolution to
generate Decision Trees.
The results show that HyTEA is capable of consistently modelling the
problem space and predicting hearing loss with an accuracy of approxi-
mately 73%. Additionally, we propose a visualisation tool based on t-SNE
to help identifying the patients that are being wrongly classified.

Keywords: Hearing Loss · Machine Learning · Evolutionary Computa-
tion · Structured Grammatical Evolution · Differential Evolution · Deci-
sion Tree

1 Introduction

According to the World Health Organisation 1 hearing loss affects around 466
million people. By 2050 it is expected that this number doubles to around 900
million people. Of the people aged over 65, 30% are estimated to have hearing loss
greater than 40dB. The untreated patient can suffer severe social and economic
consequences, greatly reducing the quality of life.

1 Source: https://www.who.int/news-room/fact-sheets/detail/

deafness-and-hearing-loss
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There are institutions that aim to lower the severity of these consequences
for example by compensating hearing loss with hearing aids. However, for these
institutions to work, it is necessary to identify and diagnose patients through
regular screenings that assess the degree of hearing loss.

In this work we propose to mitigate the impact of hearing loss in society
by using Evolutionary Computation to build models that can predict if a per-
son is likely to have a positive diagnosis, so they can be called for a hearing
screening. This will allow health professionals to call potential patients for an
official diagnosis, resulting in a reduction of the negative effects that the hearing
impediment might bring. Given that understanding why the model is making a
certain prediction is key for the medical professionals, our framework relies on
models that can be understandable, namely Decision Trees (DTs). Usually, to
build DTs, we rely on greedy induction algorithms which might be sub-optimal,
resulting in models that might become overfitted to the training data. To over-
come this issue we propose the usage of a hybrid Evolutionary Computation
(EC) approach based on Structured Grammatical Evolution (SGE) [9] and Dif-
ferential Evolution (DE) [18]. The SGE algorithm will use a grammar to specify
the syntactic restrictions of the DTs, and it will be responsible for evolving their
macro structure. Then, the DE algorithm will optimise the numeric parameters
of each model according to the real data.

Over the years, several approaches have been proposed aiming at using EC
to build Decision Trees [2,16], most of them using Genetic Programming (GP).
However, the results show that, during the evolutionary process, the population
tends to be plagued with invalid individuals, which slows down the evolutionary
process, compromising the overall results. To tackle this, and eliminate the oc-
currence of invalid individuals, we rely on a Context-Free Grammar to limit the
search space to a valid solution by specifying the syntax restrictions that should
be followed to create DTs.

The results of our proposed approach show that HyTEA is robust, being
able to consistently generate models for hearing loss prediction with accuracies
above 70%, which is similar to those obtained with traditional models. The
visualisation of our data with t-SNE also shows that the generated classifiers are
correctly modelling the problem space.

The remainder of the paper is organised as follows. In Section 2 we showcase
the key concepts required to understand the work at hand and do a brief survey
of related works. Section 3 details the architecture and inner workings of HyTEA.
In Section 4 we detail the experimental study to validate the proposed approach
and in Section 5 we present and discuss the obtained results. Finally, Section 6
gathers the main conclusions.

2 Background

2.1 Evolving Decision Trees

The usage of Evolutionary Computation to evolve and design Decision Trees
(DT) has been subject of intense research. In [2], Barros et al. show that the vast
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majority of works rely on Genetic Programming (GP) using a random initiali-
sation of trees with test values being constrained to guarantee the logic validity
of the tests. Most works use the full or the ramped-half-and-half methods, while
only one of the reviewed works uses the grow method. Some works use a para-
metric parsimony pressure approach to counter overfitting, arguing that a good
balance between parsimony and accuracy is critical for efficient evolution. Works
not using parsimony pressure usually do not defend this choice either since the
evolution is slowed down due to larger trees and the bloat leads to overfitted
DTs which do not perform well on test data.

In [16] the authors make the argument that many invalid trees are created
after applying the crossover and mutation operators and that one attribute may
be examined more than once along the same path from root to leaf. To tackle
this issue, [16] prunes subtrees where a nominal attribute test is repeated.

2.2 Machine Learning in Audiology and Hearing Loss

There are several works that report the successful application of Machine Learn-
ing (ML) in the field of Audiology, most of them focusing on predicting a specific
type of hearing loss such as noise induced [5], sensorineural (deficiency of neural
signal transfer from the cochlea to the auditory cortex) [4] and idiopathic sudden
sensorineural [13].

A recent survey [3] does a review on the contributions and limitations of
eight works [1,5,6,8,21,22,19,20] using ML to predict Noise Induced Hearing Loss
(NIHL). The work concludes that exposure to noise above 85 dBA for over 8
hours and exposure to noises over 3 kHz as the most important risk factors
for NIHL. They also show that there are other factors that affect individuals
susceptibility to NIHL such as demography, hearing protection usage and mu-
tations to genes that alter the K+ concentration in endolymph. Most of the
works surveyed used features such as age, gender, duration of noise exposure,
smoking habits, working experience in years and hearing thresholds at multiple
frequencies. They also were based on highly unbalanced datasets, having only
between 10% to 33% of the individuals suffering from NIHL which is usually
defined by patients having an hearing threshold above 25 dB. Moreover, the size
of the datasets was small, with studies having samples sizes equal to or under
210, while the remaining have sample sizes of 1113, 2110 and 10567.

3 HyTEA: Hybrid Tree Evolutionary Algorithm

The goal of the proposed approach is to design Decision Trees (DT) to predict
if a person is likely to have hearing problems. While aiming at maximising the
predictive power of the model, we also need to balance its complexity, keeping
a simple structure for high interpretability.

For this we propose HyTEA, an Evolutionary Algorithm that relies on Struc-
tured Grammatical Evolution (SGE) [11,9] and Differential Evolution (DE) [18].
The former is responsible for evolving the macro structure of each DT, such as
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deciding the number of nodes and which features, or combination of features,
should be used at each node. Each model is then passed to the DE algorithm
that parses the tree and optimises the numeric parameters that will be used at
each node to perform the splits. Figure 1 presents an overview of the proposed
architecture.

Fig. 1: Overview of the proposed hybrid architecture.

In the first step, we prepare our dataset by performing several pre-processing
operations such as feature engineering, addressing the problem of missing values
and performing feature normalisation. Additionally, we split our dataset into 3
subsets: i) the Training set which will be used by the Differential Evolution com-
ponent; ii) the Validation set which will be used by SGE for fitness assignment;
iii) the Test set which will be used to validate the quality and generalisation abil-
ity of the best individuals found by our solution, in the end of the evolutionary
search.

In the second step, we generate DTs using HyTEA. Firstly, SGE will search
for the macro structure of each model, using a grammar that defines the nec-
essary syntax restrictions using “if-then-else” constructs as shown in Figure 2.
The symbol “%f” is a placeholder for a real number that will be searched and
optimised by the DE algorithm. Using this grammar we can create DTs where a
node is a leaf when the terminal symbol “is positive(%f)” is selected to replace
the non-terminal symbol <node>. Otherwise, the node will correspond to a split.
In the split, a decision is done based on a condition of the form ”<expr> <= %f”
where ”%f” is the split value of the feature calculated in <expr>. <expr>can be
replaced by a numeric constant, a feature from the original dataset (represent
by the x array) or a combination of features through the application of an ad-
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dition, subtraction, multiplication or protected division. After having the macro
structure of the DT, it is passed to the DE algorithm which will search for the
numeric values of the “%f” placeholders that maximise the prediction accuracy
of the model in the Training set. Lastly, the model is evaluated in the Validation
set, and it is the quality obtained in this set that will be used as fitness in SGE.

Finally, in the third and final step the best performing models found are used
in the Test set. This step is performed when the evolutionary run is finished, to
assess the generalisation ability of the best DT found. This step is paramount
since it measures the extent to which the best DTs are robust and generalisable
for situations beyond the training data.

<start> ::= <node>
<node> ::= is positive(%f) | (<node>) if (<condition>) else (<node>)
<condition> ::= <expr><signal>%f
<signal> ::= <=
<expr> ::= <op>(<expr>,<expr>) | <var>
<op> ::= add | sub | mul | protdiv
<var> ::= x[0] | x[1] | ... | x[60] | 1.0

Fig. 2: Grammar used by Structured Grammatical Evolution in the hybrid ap-
proach.

4 Experimental Setup

4.1 Dataset

To develop models capable of predicting hearing loss we built a database of 25398
patients records, with information regarding the county of origin, birth date, au-
diometry screenings, hearing aid usage, and responses to a Hearing Health ques-
tionnaire. The patient data was complemented with socioeconomic indicators
such as demographics, education level, type of industries in the county, ageing
index, salary levels, turnover per type of economic activity as well as per eco-
nomic sector, the numbers of diabetes diagnosis and heart problems, the number
of otorhinolaryngology exams, and fatality rates for hemorrhagic and ischemic
strokes [14,15], resulting in a total of 60 features. The patient data is private and
therefore can not be made accessible however all other indicators can be found
in [14,15]. Indicator’s data was aggregated with the calculation of means, me-
dians, quartiles and standard deviations and features were selected via Pearson
correlation.

Concerning the the number of patients suffering from hearing problems, 42%
of the total patients were diagnosed with loss.
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4.2 Evolutionary Settings

We used the SGE implementation publicly available on Github [7]. As for the
DE, we used the implementation from the SciPy’s Python library [17].

Since DE is sensitive to differences between the numeric values, we scaled all
the features in the dataset. After some preliminary experiments with several DT
models and 3 different scaling techniques we apply a Standardisation Scaling
technique bounding the features to the following interval [-3; 3].

The parameters used to configure each algorithm are summarised in Table 1.
The settings used by the SGE were defined following the recommendations pro-
posed in [9,10]: {Number of Runs: 30; Population Size: 200; Generations: 100;
Crossover Rate: 0.9; Mutation Rate: 0.1; Elitism: 10%; Tournament Selection
with size 3; Minimum Tree Depth:3, Maximum Tree Depth: 10}. It should be
noted that Maximum Tree Depth is the depth of the derivation tree, not the
DT, and that once this depth is reached terminal derivations are prioritised.

For the DE algorithm we use 15 individuals, and allow the algorithm to run
for 20 generations. The mutation rate is variable between 0.01 and 0.2, and we
use the best/1/bin DE strategy.

Table 1: Parameters used in the experimental study for each method.
Parameter SGE DE

Population 200 15
Generations 100 20

Parent Selection Tournament with size 3 N/A
Elitism 10% N/A

Crossover Rate 0.9 0.7
Mutation Rate 0.1 Between 0.01 and 0.2

Minimum Tree Depth 3 N/A
Maximum Tree Depth 10 N/A

4.3 Fitness Assignment

Initially, the dataset is divided into three parts: 60% of the samples are used
for Training, 20% are used for Validation, and the remainder 20% are used
for Testing. As described in Section 3, the training data is used by the DE
algorithm to optimise the parameters of the model. To reduce the training time,
we randomly select a balanced subset of 1000 samples from the training set to
be used by DE at each generation. This allows us to use all the available data
for training during the evolutionary process, balancing the computational effort
needed to train the model without compromising its predictive performance.

Once the individual has been optimised by the DE, we use it to classify the
samples in the validation set. After all the samples are classified, we measure
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the accuracy of the model and use it as the fitness of the individual in the SGE
algorithm.

During the parent selection stage if individuals have a validation accuracy
difference lower than 2% we consider that they have the same fitness, i.e., we
consider them to be tied. To resolve the ties, we take into account the individual’s
size measured as the number of internal nodes of the DT, i.e, individuals with
less nodes are considered better. With this mechanism we introduce pressure
towards parsimony, leading to simpler and easier to interpret models.

5 Results and Discussion

5.1 Training

The performance of the best individuals accuracy over 100 generations is dis-
played in Figure 3. The presented results are an average of 30 independent runs.
A brief perusal of the curve reveals that HyTEA gradually improves the quality
of the solutions over the entire evolutionary search. Looking at the performance
of the best individuals, it is possible to see a rapid increase in the models’ qual-
ity during the first 20 generations. From this point forward, the accuracy still
improves, but at a much slower rate.

Fig. 3: Mean Best Fitness and Population Mean in the Training data across over
100 generations. The lines represent averages of 30 runs. The shadowed area
represents the 95% confidence interval.

In Table 2 we present a summary of the training results for the hearing
loss prediction. Looking at the quality of the best models after the 30 runs, we
obtained an average accuracy of 0.72 (±0.005), with a 95% confidence interval of
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[0.720;0.724]. The results show a small standard deviation and a small range in
the confidence interval, which indicates that HyTEA is robust, i.e., for different
runs, the discovered models have a similar predictive ability.

Table 2: Summary of the results for the training dataset. The results are averages
of 30 runs.

Fitness

Mean 0.722

Standard Deviation 0.005

Median 0.721

Best 0.735

95% CI [0.720; 0.724]

Finally, the best discovered model is presented in Fig. 4. This model obtained
an accuracy of 0.735 in the training set. Looking at the DT, it is possible to see
that it contains nodes that result from the combination of features through
the application of simple arithmetic operations (e.g., the root node). This is an
indication that HyTEA is also performing feature engineering when constructing
the models. Table 3 details the features that are used by the best model.

(age + question_1_1) <= -0.41

company_turnover_11_2009 <= 2280815.47

company_quantity_6_2019 <= -81.87 (question_2 + question_4_3) <= -0.02

age <= -482.03

question_1 <= 5.18

No Hearing LossNo Hearing LossNo Hearing LossNo Hearing Loss Has Hearing Loss

Has Hearing Loss

Has Hearing Loss

Fig. 4: Best model obtained by HyTEA after 30 runs with an accuracy of 0.735.

5.2 Testing

The absolute performance of the models that are created by HyTEA is assessed
using the Test data. This step is crucial since it provides us with information
about the generalisation ability of the DT. Figure 5 presents the performance
of the best model discovered in each generation of the test data. The results are
averages of 30 runs. Looking at the evolution of the quality of the models we
can observe the same trend obtained during training, with the models gradually
improving their predictive ability. At the end of the evolutionary process, the
best model found has a testing accuracy of 73.7%, while the average accuracy is
of 0.719± 0.007. The results of our experimentation are summarised in table 4.
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Table 3: Description of the variables used by the best DT evolved by HyTEA
(see Figure 4).

Feature name Description

age Patient age

question 1 1 Answered ”Yes” to question ”Do you feel hearing
difficulties?” (0 or 1)

company turnover 11 2009 Total turnover of companies in the retail sector in
the patient’s county measured in 2009

question 1 Answer to question ”Do you feel hearing difficul-
ties?” (Between 1 and 7 where 1 is never and 7 is
always)

company quantity 6 2019 Total number of real estate companies in the pa-
tient’s county of origin measured in 2019

question 2 Answer to question ”Do you use an hearing aid?”
(Between 1 and 7 where 1 is never and 7 is always)

question 4 3 Answer ”Sometimes” to question ”Do third par-
ties denote your hearing loss?” (0 or 1)

Fitness Accuracy F1 Precision Recall Tree Depth

µ 0.722 0.719 0.721 0.716 0.727 3.262

σ 0.005 0.007 0.012 0.014 0.030 0.702

min 0.714 0.708 0.690 0.698 0.638 2.000

max 0.735 0.737 0.741 0.752 0.779 6.044

Table 4: Fitness, accuracy, F1, precision and recall for the 30 runs of the HyTEA
experiment.
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Another interesting outcome of this analysis is the fact that there is no evi-
dence of overfitting since the models keep their testing performance on par with
the training. This is an important result since it shows that HyTEA is not only
robust but it is also able to discover models that can be used to infer and detect
if a person is likely to suffer from hearing loss.

Fig. 5: Performance of the best model found in each generation on the Test Data
across 100 generations. The lines represent averages of 30 runs. The shadowed
area represents the 95% confidence interval.

To better understand our models and the decisions that they were making,
we used a visualisation tool based on the t-Distributed Stochastic Neighbour
Embedding (t-SNE) [12]. This tool allows us to project all the samples in two
dimensions, enabling us to study the distribution of the samples of the different
classes and identify situations where our models have problems making correct
predictions.

Figure 6 presents a comparison between the original search space where each
point is coloured using its true label (Figure 6a) with the labels obtained after
classifying each sample using the best DT found (Figure 6b). In general, it is
possible to see that the best DT is able to learn to distinguish between samples
with hearing loss and without hearing loss. In Figure 7 we can observe that most
incorrect classifications happened in regions of high uncertainty where clusters
consisted of a mix of both classes. The central cluster in the t-SNE visualisation,
consisting mainly of instances with no hearing loss, had a few misclassifications.
After closer inspection of the features of the samples that were wrongly classified,
we found they corresponded to instances where one ear of the patient had no
hearing loss whilst the other one had a severe case of hearing loss.
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(a) t-SNE visualisation of the problem
space with the correct classes.

(b) t-SNE visualisation of the problem
space with the classes attributed by the
best Decision Tree.

Fig. 6: t-SNE visualisation of the problem space

Lastly, we compared the performance of HyTEA against traditional ML mod-
els. In concrete, we used the Scikit-Learn framework to create tree based models,
such as simple Decision Trees, Random Forests and Gradient Boosting. In the
comparisons of the models we used the default parameters defined by Scikit-
Learn, without any hyper-parameter optimisation. The average test accuracy
results obtained for the simple Decision Trees, Random Forest and Gradient
Boosting were 0.670± 0.086, 0.740± 0.088, and 0.741± 0.075, respectively. The
Decision Tree and Random Forest approaches also had 100% accuracy in the
training set in all runs, showing great overfitting while the Gradient Boosting
approach had 76.9% accuracy in the training set, showing only slight overfitting.

When comparing to the performance of HyTEA, which obtained an accuracy
of 0.719 ± 0.007, we can see that its overall performance is better than simple
Decision Trees, and has a similar performance to the ensemble methods while
being more consistent than any of the traditional models. We applied a statisti-
cal test to compare the different approaches and found that there are meaningful
differences between HyTEA and the simple Decision Trees, i.e., HyTEA is bet-
ter. Regarding the comparison with the ensemble models, there we found no
differences.

6 Conclusions

Hearing loss is a health problem that is affecting an ever-growing number of peo-
ple. Nowadays, around 5% of the world population suffers from hearing problems
but this number is expected to grow to 10% (1 in 10 people) in 2050. If we con-
sidered the population above the age of 65 years old, these numbers are even
larger, where it is estimated that over 30% of individuals have hearing loss. The
lack of proper hearing levels has a negative impact on people lives since they
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Fig. 7: t-SNE visualisation of the problem space discriminating the incorrectly
classified instances by the Decision Tree. The dashed circle highlights the area
of instances of partial hearing loss that were wrongly classified.

will have difficulties in communication. Additionally, there is an economic im-
pact associated with the non-treatment of hearing loss, estimated in US $ 750
billion worldwide. These figures include costs for medical treatment, education,
and loss of productivity.

In this paper, we proposed HyTEA, a way to mitigate the impact of hear-
ing loss in society. HyTEA uses Structured Grammatical Evolution (SGE) and
Differential Evolution (DE) to build models that can predict if a person is likely
to suffer from hearing problems. Using the prediction by the models, a health
official can call the person for a hearing screening to obtain an official diagnosis,
which will result in a reduction of the negative effects of the hearing impediment.
HyTEA uses SGE to build the macro structure of the models, and then they are
sent to a DE module so they can be further optimised.

The results obtained show that HyTEA is able to discover models that have a
good predictive ability, obtaining a test performance of 73.7%. We also performed
an analysis on the examples that were being wrongly classified to understand
what was happening. After a detailed analysis of the features, we found that some
instances that were wrongly classified corresponded to patients who had partial
hearing loss, i.e., only one ear was affected. To the best of our knowledge, HyTEA
is the first evolutionary approach used to predict hearing loss problems. The
experimental study conducted and the results obtained confirm that it can be a
well-founded solution to the problem of predicting a hearing loss. Additionally,
its general architecture allows its use in a broad range of problems.
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Abstract. Decision trees are some of the most popular and intuitive
classification techniques. Based on the recursive division of the data, the
goal is to ultimately identify regions in the space in which most instances
belong to the same class. This paper proposes a game-theoretic decision
tree using a two-player game to determine the splitting hyperplane at
the node level based on the Nash equilibrium concept. The entropy on
each sub-node is used as a payoff function that has to be minimized.
The game’s equilibrium can be computed by minimizing an objective
function constructed based on Nash equilibria properties. A new selection
mechanism is proposed for the Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES) in order to approximate equilibria at each node level.
Numerical experiments illustrate the behavior of the approach compared
with other decision trees based methods.

Keywords: Binary classification · Nash equilibrium · CMA-ES.

1 Introduction

Decision Trees (DT) and binary classification problems form an excellent combi-
nation as the former can be seen as a simple and intuitive representation of the
latter’s solution. They were listed early on among the top 10 algorithms for data
mining [21] and have been used extensively in applications in many fields [19].
However, the simplicity of interpretation of axis-parallel ones has been replaced
by various performance-enhancing splitting techniques, starting with oblique and
nonlinear variants, followed by various hybridization with other methods such
as neural networks, clustering, etc. Most DT induction algorithms make use at
some point of the concept of optimization as they search for the best splitting
mechanism in the form of the maximum/minimum of some indicator/error mea-
sure. However, in situations in which a trade-off is required, such as the one
needed to avoid overfitting, optimal solutions may not be the most efficient.

When dealing with trade-off situations, game theory provides a series of so-
lution concepts designed to overcome some of the disadvantages of the optimal
solutions in conflicting situations. One of the most popular is the Nash equilib-
rium, which ensures stability against unilateral deviations. This paper proposes
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a simple method to explore the use of the Nash equilibrium concept to construct
splitting hyper-planes at non-terminal node levels of a DT. A game in which the
two sub-nodes try to minimize their entropy is designed. The game’s equilibrium
is approximated by minimizing a simulation-based objective function.

2 Decision trees

The binary classification problem can be described as finding a rule for assigning
labels to data instances based on the information provided by a training set
consisting of data from the same distribution for which the labels are known.
Let D be the given data set, D ⊂ RN×p, consisting of data instances xi ∈ Rp,
and yi ∈ Y , Y ⊂ {0, 1}N , the corresponding labels [9,22].

Decision trees (DT) [2] generate such rules by splitting data into regions that
are “pure” with respect to one label, i.e., most data instances in that region have
the same label; they assume that other, unlabeled instances, belonging to the
same region would also have the same label. Regions are defined by using hyper-
planes, either axis parallel [2] or oblique [14,20]. Nonlinear separation methods
also have been proposed, for example, by [12]. Compared to axis parallel splitting
methods, oblique and nonlinear ones are known to be more efficient at the ex-
pense of computational complexity. The tree representation allows the recursive
division of the data space while also being intuitive in representing the defined
rules.

Thus, each tree node contains some data that must be split (or not). If the
data can be considered “pure enough” based on some indicator - usually derived
from the proportion of instances having the same label, then that node becomes
a leaf node for the tree. If not, a splitting rule separates the data into two subsets
as “pure” as possible that will be assigned to its two sub-nodes. Decision trees
differ in how they split node data, evaluate the purity, and perform the prediction
based on leaves data.

Oblique decision trees typically test at each node an expression of the form

p∑

j=1

ajxij + ap+1 ≤ 0,

where a1, a2, . . . , ap+1 ∈ R are parameters defining the hyperplane and xi =
(xi1, xi2, . . . , xip) ∈ D is a data instance. The induction of an optimal oblique
DT is a computationally challenging task. Moreover, unlike in the case of axis-
parallel DTs, the exhaustive search for the best splits is mostly not feasible.

There are many flavors of oblique decision trees. In [20] the authors pro-
pose HHCART as an oblique decision tree that uses Householder matrices to
estimate data orientation during the split at non-terminal node levels. Another
approach hybridizes a neural network with a decision tree to get the best of the
two worlds: the precision of the neural network combined with the readability of
the decision tree [18]. Another hybridizing technique uses fuzzy set theory and
fuzzy information theory to create fuzzy ODTs [4]. In a bottom-up approach to
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the induction of decision trees, clustering and binary classification techniques
are used to create leaves; hyper-planes are optimized by using feature selection
[1]. The explainability of the oblique decision trees has also been a concern as
the adoption of a classification model by non-practitioners is dependent mainly
on its ease of interpretability [11,10]. The approach presented in this paper is
novel because it attempts to use the Nash equilibrium concept at the node level
for splitting data to take advantage of the stability properties of this solution
concept. In what follows, the proposed game and decision tree model are pre-
sented.

3 ESDT - Equilibrium Split Decision Tree

ESDT uses the concept of Nash equilibrium to split node data X, y. The Nash
equilibrium is one of the most popular solution concepts for non-cooperative
games. A game is defined by a set of players that have to choose among a set
of actions/strategies and receive a payoff based on their choices. The game aims
to maximize (or minimize) each player’s payoff. However, as in most situations,
all the players cannot maximize their payoffs simultaneously; the compromise
proposed by the Nash equilibrium concept is a situation in which no player can
improve its payoff by unilateral deviation.

Consider the normal form game ΓX,y consisting of:

– Two players corresponding to the two sub-nodes of a parent node, denoted
by L-left and R-right. The subset of X and y corresponding to the left sub-
node is denoted by XL and yL respectively, and to the one to the right
sub-node by XR and yR.

– Each player chooses as a strategy a splitting parameter βL and βR for X
with the aim to minimize its own entropy.

– the payoffs EL(βL, βR) and ER(βL, βR) are computed as the entropy of its
data if X is split by using parameter β computed as the average of βL and
βR.
In order to evaluate the entropy of the sub-nodes, the data in the node is
split using parameter β in the following manner: an element x ∈ X is placed
in XL if xTβ <= 0, and otherwise is placed in XR (Figure 1).

The equilibrium of this game represents a set of split parameters (βL, βR)
such that there is no possible decrease of the entropy of either node by unilateral
deviation of any of the players.

Equilibrium Split Decision Trees (ESDT) use the equilibrium of game Γ to
split data at a node level. At each node level, the equilibrium of the game ΓX,y

is approximated, and the data is split based on the information provided by the
game. The induction of the tree stops either when a maximum depth is reached
or when data in the nodes is “pure”, i.e., all instances belonging to that node
have the same label.
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X, y, β
β = 1

2
(βL + βR)

XL, yL, βL
{x ∈ X|xTβ ≤ 0}

min
βL

E(yL)

XR, yR, βR
{x ∈ X|xTβ > 0}

min
βR

E(yR)

Fig. 1. Node splitting procedure in game Γ (X, y). Nodes to the left and to the right
choose parameters βL and βR to minimize their entropy. The parent node is split using
β, the average of the two.

Node level At the node level, the data X, y are split based on the equilibrium
strategy of game ΓX,y by using the strategy of the left player, βL. In this manner,
the left node will have a better separation potential as βL is fitted for data likely
to be placed on this node. However, on the other hand, the right node will
contain more mixed data values separated in the next step. In this manner, an
asymmetric tree will be created in which the probability that the right nodes
will be further split will be higher than that of the left nodes.

Algorithm 1 Node split

1: Input: X, y;
2: Output: XL, yL, XR, yR, and β to define the split rule for the node;
3: Approximate (using βCMA-ES)

(β∗
L, β

∗
R) = argmin

βL,βR
ν(βL, βR|X, y)

4: Set XL = {x ∈ X|xTβ∗
L ≤ 0} and

yL = {y ∈ Y |x ∈ XL}
5: Set XR = {x ∈ X|xTβ∗

L > 0} and
yR = {y ∈ Y |x ∈ XR}

6: Return: XL, yL, XR, yR, β∗
L

Leaf level As there is no reason to assume that the equilibrium of the game
provides a perfect separation but instead may provide good separable data for
the sub-nodes, the parameter β of the probit classification estimated by using
MLE (see Example 1) is computed and preserved in the leaves and used to make
predictions if the leaf is not pure and contains at least two instances with a
different label than the majority. If the probit model cannot be used, i.e., the
leaf is ’pure’ or contains only one instance of data with a different label than
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Fig. 2. A synthetic data set with 50 instances: (a) the data set X, y; (b) distribution of
XTβ, where β is the probit parameter computed using MLE; (c) distribution of XTβL,
where βL is the CMA-ES approximation of the equilibrium strategy for the left-node.

Fig. 3. Split data in each sub-node corresponding to Figure 2(b) in (a) and (b) and to
Figure 2(c) respectively in (c) and (d).

the rest, probabilities for test data are computed based on the proportion of
instances of each class in the leaf.

Equilibria computation - βCMA-ES The equilibrium of game ΓX,y is a
strategy profile such that no player has an incentive for unilateral deviation. We
can actually use this property to approximate a Nash equilibrium of the game.
A number of unilateral deviations uniformly distributed are generated for each
player and the sum of squares of the deviations that lead to a better entropy
value is minimized. We denote this function by ν(βL, βR|X, y):

ν(βL, βR|X, y) =

nd∑

k=1

(
max{0, E(βL, βR)− E(βL + U([a, b], p), βR)}2+

max{0, E(βL, βR)− E(βL, βR + U([a, b], p))}2
) (1)

where U([a, b], p)) denotes p uniformly distributed values in the interval [a, b]
and nd is the number of deviations used for the evaluation.

Function ν simulates the corresponding optimization approach to Nash equi-
libria computation for normal form games [13] where a similar (exact) function
has global minimas with value 0 for all the Nash equilibria of the game. Thus,
minimizing ν should lead to solutions that are close to or present some equilibria
properties such as stability against unilateral deviations for some of the players.

The minimization of function ν is not a trivial task, especially since we do not
have an analytical form. Moreover, an additional challenge is that for some data
sets, we can expect multiple solutions to be equilibria as multiple parameters
classify data in the same manner. However, we can test the assumption that
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such an approach may be useful in designing a DT, by using an optimization
heuristic such as CMA-ES: Covariance Matrix Adaptation Evolution Strategy [8]
to approximate game equilibria by minimizing function ν(). CMA-ES evolves the
mean and covariance matrix of a population of potential solutions to the problem
to find optimum regions. It can be used with minimum changes in parameter
settings and can be easily adapted to many types of optimization problems.

Thus, to minimize ν(), CMA-ES may be run with default parameters. How-
ever, in order to tackle the problem of dealing with multiple possible solutions
the selection method of CMA-ES is modified in order to additionally ensure the
minimization of ∥β∥ =

∑2p
j=1 β

2
j as a mechanism to select one of the parameters

from the set the optimal ones.
CMA-ES evolves the mean and covariance matrix of a normally distributed

population. Each iteration it generates a population of individuals by using the
current values of the mean covariance matrix and selects the best µ individuals
- based on the values of the objective function - to use for updating population
parameters. We are interested in finding solutions for which ν() = 0, which may
be game equilibria. Among such solutions, we want to preserve the “smallest”
ones. One of the most common approaches to such a problem is to add ∥β∥ to the
objective function, multiplied by some factor. Here we propose a new mechanism
to minimize first the objective function ν() and among optimal solutions to
further minimize ∥∥: the objective function to be minimized is ν(); when more
than µ individuals converge to the (known) optimum of 0, their fitness is modified
in the following manner:

(i) ∥β∥ is added to all individuals having the fitness value equal to 0; in this
manner they will be sorted and selected based on their magnitude;

(ii) in order to avoid individuals γ with ν(γ) > 0 to appear to be better than
individuals in the first situation, the maximum of ∥β∥ from all β having
ν(β) = 0 is added to their fitness.

Thus ∥ · ∥ is minimized only if necessary, and only solutions that are aleady
optimal are subject to this minimization process. We labeled this adaptive ver-
sion of CMA-ES by βCMA-ES.

Example 1. Consider the data set X, y represented in Figure 2(a)1. A simple
way to find a parameter β that can optimally split data (X, y) is to use probit
classification [7]. Within this model the probability that an instance x has label
1 is estimated by using the cumulative distribution function of the standard
normal distribution Φ(·):

P (y = 1|x) = Φ(xTβ), (2)

where β is the model parameter computed by maximum likelihood estimation
(MLE). MLE optimizes the log likelihood function in an attempt to find β such

1 Generated by using the function: make classification(n samples=50, n fea-

tures=2, n redundant=0, n informative=2, n classes=2, random state=50,

class sep=0.5, weights=[0.5]) from the Python module sklearn.datasets.
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that it maximizes probabilities in (2) for all x ∈ X with label 1 and minimizes
them for all x ∈ X having label 0.

Parameter β can be used to separate data in X: if Φ(xTβ) ≥ 0.5 then the
model assigns to x the label ŷ = 1 and x would be placed in the right sub-node.
But the condition Φ(xTβ) ≥ 0.5 is equivalent to xTβ ≥ 0 so β can be used to
define a separating hyperplane for a node. In the same manner, if xTβ < 0 then
x will be assigned label ŷ = 0 and placed in the left sub-node. In fact any β
value such that (ideally) for all x with label 1 we have xTβ ≥ 0 and for those
with label 0 we have xTβ < 0 would provide a reasonable hyperplane to split
data. Figure 2(b) represents the values of XTβ with corresponding labels for the
Probit classification model distributed under the standard normal probability
distribution (green). To the right, the values ofXTβL are represented in the same
manner, but here βL is the approximation of the Nash equilibrium strategy of
the first player (left node) of the game ΓX,y computed by minimizing function ν
in (1) with βCMA-ES. Figure 3 represents the distribution of data in sub-nodes
in each case. Corresponding entropy values for the sub-nodes are for probit: 0.82,
0.87; and for game Γ : 0.70, 0.84.

4 Numerical Experiments

Numerical experiments are performed to illustrate the potential of the proposed
approach on a set of synthetic and real-world data-sets with various degrees of
difficulty.

Synthetic data-sets In order to ensure reproducibility and also to control the
characteristics of the benchmarks, we use the make classification function
from the scikit-learn library [15] to generate the data, and we report the pa-
rameters for each variant of the data. The parameters used to generate data sets
are all combinations of: number of instances (100, 250, 500), number of features
(2, 5, 10), number of classes (2), class separator (0.1, 0.2, 0.5, 1), weights for each
class (0.5), and random state (500).

Real-world data We use four real world data sets2 that represent a binary clas-
sification problem and have various degree of difficulty. The data sets used are:
iris data set (D1) from which we removed the setosa instances in order to obtain
a linear non separable binary classification problem, Pima Indians Diabetes data
set (D2) with eight attributes and 768 instances, the sonar data set (D3) with
60 attributes and 208 instances, and Haberman’s Survival data set with three
attributes and 306 instances (D4).

ESDT parameter settings ESDT was run using the following parameters: max-
imum tree depth 5 and 10; CMA-ES population size 15 and maximum number

2 UCI Machine Learning Repository https://archive.ics.uci.edu/ml/index.php, ac-
cessed October 2021

57



8 R. I. Lung and M.A. Suciu

of fitness function evaluations 1500; in evaluating ν() we generated 500 unilat-
eral deviations for each player, following a uniform distribution in the interval
[−0.5; 0.5].

Comparisons with other methods We compare the performance of ESDT with
the following classifiers:

– Decision Tree (DT) classifier [2] in two variants the use the gini and entropy
indicators as a split criterion; with a maximum depth of 0 (split until all
leaves of the decision tree are pure), 5 and 10 for each variant;

– Random Forest (RF) classifier [3] with 5 and 10 estimators respectively,
the gini or entropy indicator as split criterion, a maximum depth for the
estimators of 0 (split until all leaves are pure), 5 and 10;

– Oblique Decision Tree (Oblique DT) classifier [20] that uses MSE for the
impurity criterion, split based on average of each feature, maximum depth
of 5 and 10.

For the compared DT and RF classifiers we use their implementations from
the scikit- learn library and for the Oblique DT we use the implementation
available [5].

Performance evaluation 10-fold cross-validation is used: each data set is split
into k = 10 folds using the StratifiedKFold method from scikit-learn (with
seeds 60, 1, 2, 3, 4) [9]. In order to estimate the prediction error each fold is used
once as test data and the rest as training data. Considering all parameters, in
the synthetic setting, we obtain 360 different data sets with different degrees
of difficulty which is a good test-bed for classification problems [17]. For each
classification model we report the AUC - area under the ROC curve [16,6] for
each k test fold of each classification problem, resulting in 50 AUC values for
each data set, that can be used in paired t-test comparisons between methods.
AUC takes values between 0 and 1, a higher value indicate a better probability
to correctly classify instances considered “true”.

Results We compare the performance of ESDT with the other methods based
on AUC values reported by each classification model on the k = 10 test folds of
each data-set. Figure 4 presents the p-values from a paired t-test that compares
AUC values on all tested folds of ESDT against the compared models, testing
the null hypothesis that ESDT results are worst than the other models. For data
sets with fewer features, 2 and 5 more than for data sets with a larger number
of instances, ESDT performs significantly better than the other classification
models. In fact, in 49% of the cases, the p value indicates that ESDT results can
be considered better and 14% of the tested data sets worse. Table 1 presents the
percent of ESDT results that can be considered better/worst for the synthetic
data sets compared with each of the other methods.

On the one hand the performance of ESDT does not seem to depend on
the number of instances but on the number of features. However, we used the
same number of fitness function evaluations for βCMA-ES for all number of
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Fig. 4. Synthetic data-sets, comparisons with other methods. Colors represent p-values
resulted from a t-test comparing AUC values reported on the 10 test folds, with the null
hypothesis that ESDT results are worst than the other method. A p - value smaller than
0.05 can be considered significant, the null hypothesis rejected, and results reported by
ESDT regarded as better than those reported by the other method. The first line in
the headers indicates the number of instances, the second one the number of attributes,
and the third the class separator.
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Table 1. Percent ESDT results outperformed/were outperformed by the other meth-
ods, based on ttest results.

ESDT
Method better worse

DT-gini 51% 6%
DT-entropy 59% 12%
RF - gini (5) 50% 13%
RF - gini (10) 40% 23%
RF - entropy (5) 48% 15%
RF - entropy (10) 37% 23%
Oblique DT 55% 2%

attributes, so differences in performance can be expected. We find that for 10
attributes ESDT is outperformed most by random forests models, which is also
to be expected. Even-more, for smaller number of features ESDT does report
better results even than random forests. Also, ESDT does not use any mechanism
to manage the features used to split data at node level: the advantage of this is
that there is no extra selection process added to the tree induction.

Tables 2 and 3 present results reported by all methods for the real datasets
when the maximum tree depth is set to 5 and 10, respectively. Mean and stan-
dard deviation of AUC values, as well as t-test results, are presented. The other
methods are also run with maximum depth tree 0, i.e., without any limit in tree
size. We find results to be similar to those observed in the case of synthetic data
sets, confirming that this approach has the potential to compete and outperform
other methods.

βCMA-ES versus CMA-ES. In order to evaluate the effect of the selection mech-
anism used by βCMA-ES we compare results reported on the synthetic data-
sets with those obtained by using CMA-ES, minimizing the objective function
ν() without any other modification. A paired ttest comparing AUC values re-
jected the null hypothesis that mean differences are less than or equal to 0 with
p < 0.0001, indicating that it can be considered that the use of the selection
mechanism improves results.

5 Conclusions and further work

The use of the Nash equilibrium concept as a possible tool for splitting data at
the node level in decision trees for the binary classification problem is explored.
A two-player game in which each sub-node attempts to find the hyperplane that
minimizes its entropy is designed, and data is split based on the equilibrium
strategy of the game. The Nash equilibrium is approximated by minimizing an
objective function that simulates a number of unilateral deviations. The function
is constructed so that - given enough deviations - it has a minimum value of 0
at Nash equilibria. CMA-ES, endowed with a new selection scheme, is used to
minimize it.
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Table 2. Results for real data sets, max depth 5, for ESTD and compared models. Mean
and standard deviation of the AUC indicator for all classifiers over all test folds; a ⋄
indicates a p value smaller that 0.05, i.e. ESDT results can be considered significantly
better and a ◦ indicates a p value greater than 0.95 when comparing the results of
ESDT with the other models. A 0 after the name of the method indicates that there
is no limit imposed to the tree depth.

Method D1 D2 D3 D4

ESDT 0.90(±0.10) 0.74(±0.06) 0.74(±0.10) 0.68(±0.07)
DT - gini 0.92(±0.08) 0.70(±0.05) ⋄ 0.72(±0.09) ⋄ 0.61(±0.08) ⋄
DT - entropy 0.92(±0.07) 0.70(±0.05) ⋄ 0.75(±0.07) 0.61(±0.08) ⋄
RF - gini (5) 0.93(±0.08) ◦ 0.70(±0.05) ⋄ 0.79(±0.08) ◦ 0.57(±0.08) ⋄
RF - gini (10) 0.92(±0.09) 0.70(±0.05) ⋄ 0.77(±0.10) 0.57(±0.07) ⋄
RF - entropy (5) 0.93(±0.07) ◦ 0.70(±0.05) ⋄ 0.76(±0.09) 0.57(±0.08) ⋄
RF - entropy (10) 0.92(±0.08) 0.71(±0.05) ⋄ 0.79(±0.08) ◦ 0.57(±0.07) ⋄
Oblique DT 0.91(±0.09) 0.66(±0.05) ⋄ 0.70(±0.09) ⋄ 0.57(±0.09) ⋄
DT - gini, 0 0.92(±0.08) 0.68(±0.05) ⋄ 0.73(±0.09) 0.54(±0.08) ⋄
DT - entropy, 0 0.92(±0.08) ◦ 0.68(±0.05) ⋄ 0.73(±0.08) 0.55(±0.07) ⋄
RF - gini (5), 0 0.93(±0.07) ◦ 0.69(±0.04) ⋄ 0.75(±0.09) 0.56(±0.07) ⋄
RF - gini (10), 0 0.92(±0.09) 0.69(±0.05) ⋄ 0.80(±0.09) 0.56(±0.06) ⋄
RF - entropy (5), 0 0.92(±0.10) 0.69(±0.06) ⋄ 0.76(±0.09) 0.56(±0.08) ⋄
RF - entropy (10), 0 0.93(±0.08) ◦ 0.70(±0.05) ⋄ 0.78(±0.09) ◦ 0.57(±0.08) ⋄

While there is no guarantee that the Nash equilibrium of the game exists
or that it is computed by βCMA-ES, it is reasonable to assume that the solu-
tions found present some equilibrium properties making them worth exploring.
Numerical results reported by ESDT compared with other tree-based methods
indicate the potential of the approach. In order to isolate the effect of using the
equilibrium concept, at this point, ESDT is based only on the Nash equilibrium
split using all features in the data at each node, and probit classification for pre-
dictions, without any feature management mechanism. Further work consists of
adding some feature selection mechanisms at the node level to improve scalabil-
ity. Many other possible modifications and improvements can be used in order to
refine classification results. However, there is reasonable evidence to support the
assumption that using the Nash equilibrium as a solution concept may benefit
the induction of decision trees for the binary classification problem.
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Table 3. Same as Table 2, max depth 10. Mean and standard deviation of AUC for all
models over all test folds; a ⋄ indicates a p value smaller that 0.05, i.e. ESDT results
can be considered significantly better and a ◦ indicates a p value greater than 0.95.
A 0 after the name of the method indicates that there is no limit imposed to the tree
depth.

Method D1 D2 D3 D4

ESDT 0.92(±0.11) 0.69(±0.07) 0.74(±0.10) 0.67(±0.10) ⋄
DT - gini 0.92(±0.09) 0.68(±0.05) ⋄ 0.72(±0.10) 0.54(±0.08) ⋄
DT - entropy 0.92(±0.08) 0.68(±0.05) ⋄ 0.74(±0.07) 0.57(±0.09) ⋄
RF - gini (5) 0.93(±0.08) 0.70(±0.06) 0.75(±0.09) 0.56(±0.09) ⋄
RF - gini (10) 0.92(±0.09) 0.71(±0.05) 0.79(±0.10) ◦ 0.56(±0.08) ⋄
RF - entropy (5) 0.93(±0.08) 0.70(±0.05) 0.78(±0.09) ◦ 0.58(±0.08) ⋄
RF - entropy (10) 0.92(±0.07) 0.71(±0.05) ◦ 0.79(±0.08) ◦ 0.56(±0.07) ⋄
Oblique DT 0.91(±0.09) 0.66(±0.05) ⋄ 0.70(±0.09) ⋄ 0.57(±0.09) ⋄
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Abstract. Positive-Unlabelled (PU) learning is a growing area of machine learn-

ing that aims to learn classifiers from data consisting of a set of labelled positive 

instances and a set of unlabelled instances, where the latter can be either positive 

or negative instances, but their label is unknown. There are many PU-learning 

algorithms, so an exhaustive search to find the best algorithm for a given dataset 

is computationally unfeasible. We recently proposed GA-Auto-PU, the first Ge-

netic Algorithm-based Automated Machine Learning system for PU learning, 

and reported its preliminary results. This work presents an improved version of 

this system with an extended search space to include spy-based techniques, and 

provides an extensive evaluation of the new and previous versions of this system. 

Keywords: Positive-Unlabelled Learning, classification, Automated Machine 

Learning (Auto-ML), Genetic Algorithm 

1. Introduction 

Positive-Unlabelled (PU) learning is a field of machine learning that aims to learn clas-

sifiers from positive and unlabelled data [1]. This differs from binary classification due 

to the absence of a distinct and accurate negative set. The two instance sets present in 

PU learning are the labelled positive set, consisting of positive instances that have been 

labelled as positive, and the unlabelled set, consisting of instances which can be in 

reality positive or negative, but whose label is unknown. Thus, the challenge is to learn 

a classifier that can predict the probability of an instance belonging to the positive class, 

despite the mixture of negative and positive instances in the unlabelled set. When learn-

ing such a classifier, a PU learning algorithm is ‘aware’ of the difference between the 

concepts of unlabelled and negative instances. This allows a PU learning algorithm to 

try to infer which unlabelled instances are negative and which unlabelled instances are 

positive. By contrast, a traditional classification algorithm given PU data is ‘not aware’ 

of the difference between unlabelled and negative instances; the algorithm simply dis-

criminates between two classes: labelled positive vs. unlabelled, so the learned classi-

fier simply predicts the probability of an instance being labelled [2].  

PU learning naturally occurs in many application domains, such as bioinformatics 

[2], text-mining [3], pharmacology [4], etc. [1], due to the impracticality of obtaining 

fully labelled data. E.g., consider datasets where the class variable represents the pres-

ence or absence of a disease. Instances with the positive class label (disease) are in 
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general reliable, indicating that the patient was diagnosed earlier. However, the data 

often also includes patients who did not undergo detailed medical examination yet, es-

sentially ‘lack of evidence for the positive class’, instead of ‘evidence for the negative 

class’ (not having the disease). Hence, if those patients are labelled with the negative 

class (as it is usually the case), this leads to unreliable negative-class labels. PU learning 

avoids this by treating all those patients as ‘unlabelled’, to reflect their unreliability. 

Many PU learning algorithms have been proposed (see [1] for a comprehensive re-

view). Hence, finding the optimal PU learning algorithm for specific classification tasks 

can prove unfeasibly time consuming and computationally expensive, should one use 

an exhaustive search. Furthermore, algorithm predictive performance is largely depend-

ent on the input data [1]. Therefore, the PU learning area could benefit greatly from an 

Automated Machine Learning (Auto-ML) system, which selects the best algorithm for 

a given input dataset, among a pre-defined set of candidate algorithms [5], [6].  

Our previous short paper [7] recently proposed GA-Auto-PU, the first Genetic Al-

gorithm (GA)-based Auto-ML system for PU learning, and reported its preliminary re-

sults. This work presents an improved version of this system with an extended search 

space and provides a much more extensive evaluation of the new and previous versions 

of this system, comparing their predictive performance to two popular PU learning 

methods on three distributions of PU data across 20 datasets, i.e., 60 PU learning prob-

lems in total; whilst only 20 PU learning problems were used in [7].  

2       Background 

2.1   Positive-Unlabelled (PU) Learning 

PU learning is a field of machine learning that aims to learn models from datasets that 

consist of only positive-class and unlabelled instances [1]. PU learning shares the goal 

of binary classification – accurately predicting the class of an unseen instance by learn-

ing to distinguish between two classes. However, as a standard binary classifier requires 

a training set with two class labels, such a classifier built using PU data would have to 

treat all unlabelled instances as a separate class, and so will predict the probability of 

an instance being labelled (Pr(𝑠 = 1)) instead of the probability of an instance belonging 

to the positive class (Pr(𝑦 = 1)) [2] – where s is a variable taking 1 or 0 to indicate 

whether or not an instance is labelled, and y is the true label of an instance, taking 

values 1 or 0 to denote the positive or negative class, respectively. In contrast, PU learn-

ing models are trained to predict Pr(𝑦 = 1) using PU data and have been shown theo-

retically to improve upon standard binary classifiers when applied to PU datasets [8]. 

Within the PU learning literature, it is commonly assumed (implicitly or explicitly) 

that the data adheres to the selected completely at random assumption [2], stating that 

for the given data, 𝐏𝐫(𝒔 = 𝟏) = 𝐏𝐫(𝒔 = 𝟏|𝒙), where 𝐏𝐫(𝒔 = 𝟏) is the probability of 

an instance being labelled, and x represents a feature vector. I.e., the labelled examples 

are selected from the positive distribution irrespective of their features and the labelled 

set is an independent and identically distributed sample from the positive distribution.  
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There are several approaches to PU learning, including the two-step approach, bi-

ased learning, and incorporation of the class prior [1]. The two-step approach is by far 

the most popular and is the focus of our proposed Auto-ML system.  

The first step of this approach identifies a set of reliable negative (RN) instances 

among the unlabelled set; i.e., a set of instances substantially different from the labelled 

positive instances and likely not unlabelled positives. The second step builds a classifier 

to distinguish the labelled positives from the RN set. These two steps use only the train-

ing set [9]. Provided that the RN set is an accurate representation of the negative class, 

this model will predict 𝐏𝐫(𝒚 = 𝟏) rather than 𝐏𝐫(𝒔 = 𝟏).  

This approach makes two assumptions [1]: (a) data separability, i.e., it is assumed 

that there is a natural separation between the positive and negative classes; and (b) data 

smoothness, i.e., it is assumed that instances that are similar to each other have a similar 

probability of belonging to the positive class. 

An example of a two-step technique is the “Deep Forest PU” (DF-PU) method [10]. 

It involves training a state-of-the-art deep forest classifier on a random sample of 20% 

of the unlabelled instances (treated as the negative class) and all positive instances. The 

bottom 1% of instances with the lowest probability of belonging to the positive class 

are added to the RN set. This process is repeated 5 times. A classifier is then trained to 

distinguish the RN set and the positive set. Our system is compared against DF-PU as 

a recent state-of-the-art PU learning method. 

We also compare our system against a well-known method: S-EM [9]. S-EM uses 

a spy-based approach, hiding some of the labelled positive instances in the unlabelled 

set and using them to determine the threshold under which an instance is considered 

RN. It uses the Expectation Maximisation algorithm [12] and determines the RN thresh-

old as the predicted probability of being positive under which l% of spy instances fall.  

Whilst the literature generally refers to two individual steps for two-step methods, 

this work uses slightly different terminology. We refer to the steps as phases and rec-

ognise that “Step 1” often consists of two distinct phases. Hence, when discussing two-

step methods, this work references Phase I-A, which extracts an initial RN set; Phase 

I-B, an optional step using the initial RN set to further extract RN instances from the 

unlabelled set; and Phase II, “Step 2” in the usual description, which builds a classifier 

using the positive and RN sets. This notation is advantageous as it recognises that “Step 

1” often consists of two distinct phases, and the use of “phase” rather than “step” allows 

us to reference the individual steps of each phase without confusion. 

2.2     Automated Machine Learning (Auto-ML) 

Auto-ML is an emerging field of machine learning (ML) that looks to limit the human 

involvement in ML applications [5], reducing the demand for domain experts and al-

lowing those without extensive ML knowledge to operate complex ML pipelines [6]. 

As algorithm performance is largely dependent on input data [13], Auto-ML is a useful 

tool as it searches for the best algorithm specific to the target ML task. 

Reference [14] proposed the Tree-based Pipeline Optimisation Tool (TPOT), an 

Auto-ML system using genetic programming (GP). The GP uses tree-based encoding 
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such that the individuals in the population are ML pipelines. The functions are pipeline 

operators and hyperparameters, e.g., specifying the number of trees in a random forest 

or the number of features selected by filter feature selection methods. The original ver-

sion of TPOT uses a multi-objective optimization approach, where each individual is 

evaluated by both the classification accuracy and the complexity of the pipeline pro-

duced, based on the Non-dominated Sorting Genetic Algorithm II [15], drawing on the 

well-known concept of Pareto dominance [16], [17]. A drawback of the original version 

is that it can produce individuals that represent invalid pipelines, with a large computa-

tional cost in terms of evaluation [18]. This issue has been addressed by other EA-based 

Auto-ML systems, such as the Resilient Classification Pipeline Evolution system 

(RECIPE). Like TPOT, RECIPE, proposed by [18], is a genetic programming system 

that evolves ML pipelines. However, RECIPE uses a grammar to ensure that all gener-

ated individuals are valid, so that it does not waste resources on invalid individuals. 

Furthermore, RECIPE evaluates a larger search space than TPOT which, whilst making 

for a more complex search space, allows for a greater variety of solutions [18].  

The systems described in this section are for standard binary classification and are 

not suitable for PU learning. Hence, we have not compared our system against any of 

these. Instead, we have compared against the two PU methods outlined in Section 2.1.  

3    The GA-Auto-PU System 

The next three Subsections define individual representation and genetic operators used 

by the GA. These subsections are based on the description of GA-Auto-PU in [7], with 

two main differences. First, the current GA version uses an extended search space of 

PU learning methods which includes two spy-based methods, not used in [7]. This in-

volves an extended individual representation and a new procedure for handling in-

stances used as “spies” (Pseudocode 3, described later). Second, in [7] the GA used a 

lexicographic multi-objective fitness function for optimising F-measure with higher 

priority and recall as lower priority (these measures are defined below). In contrast, in 

this current paper the GA uses a simpler fitness function, optimising the F-measure 

only. This simplification was made because further experiments (performed after the 

writing of [7]) have shown that the simpler fitness function (F-measure only) produces 

results qualitatively similar to the more complex lexicographic fitness function, hence 

the former is now used in this work. The F-measure is defined as follows:  

F-Measure = 2 ×
Precision×Recall

Precision+Recall
         Precision =

TP

TP+FP
       Recall =

TP

TP+FN
 

TP is true positive count, FP is false positive count, and FN is false negative count. 

3.1     Individual Representation 

An individual of the GA represents a candidate solution, i.e., a two-step PU learning 

method and its hyperparameter configuration. In both versions of the system, each two-

step technique is composed of three components: phase I-A, phase I-B, and phase II. 

Phase I-A of the original system [7] consists of three parameters: iteration_count_1A, 
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threshold_1A, classifier_1A. The new proposed version of the system introduces three 

new parameters for phase I-A: spy_flag, spy_rate, and spy_tolerance.  

The iteration count determines the number of subsets to split the unlabelled set into 

when learning a classifier to distinguish between the positive and the unlabelled set. 

E.g., if the iteration count is 5, each subset will contain 20% of the unlabelled data. This 

helps to handle the imbalance present in many PU learning datasets. The threshold de-

termines the predicted probability of belonging to the positive class that an instance 

must fall under to be considered a reliable negative (RN) instance. In the literature, the 

iteration count and threshold are either set heuristically [9] or arbitrarily [10]. The pre-

vious version of the system did not generate PU learning methods with heuristic initial-

isation, but this has been added with the inclusion of spy-based methods. The classifier 

is the classifier used to predict the RN instances. Spy_flag is a Boolean value used to 

indicate whether or not to use a spy-based method in Phase I-A. Spy_rate determines 

the percentage of positive instances to use as spies. Spy_tolerance determines what per-

centage of spies can remain in the unlabelled set when the threshold is calculated.   

Phase I-B consist of three parameters: threshold_1B, classifier_1B, and 

phase_1B_flag. The threshold and the classifier are analogous to those used in phase I-

A. The phase_1B_flag parameter indicates whether to skip phase I-B or not. Phase I-B 

is not always utilised in PU learning techniques, and therefore the system will also gen-

erate individuals that are able to skip this phase. Phase II simply consists of a single 

parameter: classifier_2. This classifier will be trained to distinguish the positive set and 

the RN set. The list of the 10 genes encoded into an individual is shown in Figure 1. 

 

iteration_       thresh.   classifier     spy_     spy_      spy_    thresh.   classifier   flag     classifier 

count_1A       _1A        _1A          flag      rate      toler.      _1B         _1B       _1B       _1B 

                                    

Fig. 1. Individual representation of the GA 

The genes Classifier_1A, Classifier_1B, and Classifier_2 can take the same set of 

values, representing 18 different candidate classification algorithms: Gaussian naïve 

Bayes, Random forest, Decision tree, Multilayer perceptron, Support vector machine, 

Stochastic gradient descent classifier,  Logistic regression, K-nearest neighbour, Deep 

forest, AdaBoost, Gradient boosting classifier, Linear discriminant analysis, Extra tree 

classifier, Extra trees classifier (an ensemble of Extra trees), Bagging classifier, Ber-

noulli naïve Bayes, Gaussian process classifier, and Histogram-based gradient boosting 

classification tree. These values are henceforth referred to as “Candidate_classifiers”.  

The candidate values of each gene in the individual representation (defining the 

search space of PU learning algorithms and their configuration) are as follows:  

• Iteration_count_1A: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

• Threshold_1A: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1A: { Candidate_classifiers } 

• Spy_flag: { True, False } 

• Spy_rate: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 } 
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• Spy_tolerance: { 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 } 

• Threshold_1B: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1B: { Candidate_classifiers} 

• Phase_1B_flag: { True, False }  

• Classifier_2: { Candidate_classifiers } 

The size of the search space of the GA is thus calculated as follows:  

10 × 10 × 18 × 2 × 7 × 11 × 10 × 18 × 2 × 18
= 1,796,256,000 possible candidate solutions. 

PU learning solutions that do not identify any RN instances get a fitness of 0.  

3.2    Outline of the underlying Genetic Algorithm (GA)  

Pseudocode 1 outlines the procedure that the GA follows to evolve a PU learning algo-

rithm. Initially, a Population of Population_size individuals is generated (step 1). The 

configuration (genome) of the individual is checked against a list of previously assessed 

configurations, and if it has not already been assessed, the Fitness of Individual is cal-

culated (step 2.a.i) as described in Section 3.3, including Pseudocodes 2, 3, 4 and 5. If 

the configuration has already been assessed, the fitness values of the previous assess-

ment are assigned to the individual (step 2.a.ii). Once all individuals have been evalu-

ated, the fittest Individual is saved for the following generation (step 2.b). A new pop-

ulation is created from Population after undergoing tournament selection (step 2.c), and 

New_pop then undergoes crossover (step 2.d) and mutation (step 2.e). Finally, Popula-

tion is set as New_pop and Fittest_individual (step 2.f). This process of fitness calcula-

tion, selection, crossover, mutation, and elitism is repeated #generations times. The 

fitness of an individual is assigned as the F-measure achieved over the 5 folds of the 

internal cross-validation (applied to the training set).  

 

Pseudocode 1 Outline of the GA Procedure 

1. Population = Generate population(); 

2. Repeat #generations times:  

a. For each Individual in Population: 

i. If Individual configuration has not already been assessed, then Assess fit-

ness(Individual, Training set); // see Pseudocodes 2, 3, 4, 5 

ii. Else Individual Fitness value is assigned as the output of the previous as-

sessment; 

b. Fittest_individual = Get fittest individual(Population);  

c. New_pop = 100 individuals selected from Population using tournament selec-

tion; 

d. Individuals in New_pop undergo crossover; 

e. Individuals in New_pop undergo mutation; 

f. Population = New_pop ∪ Fittest_individual;  

 

Both versions of the system utilize standard uniform crossover and mutation (re-

placing a gene’s value by a randomly sampled candidate value) as search operators. 
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3.3     Fitness Evaluation 

Recall that each individual encodes three classification algorithms, which are used in 

phases I-A, I-B and II of the PU learning system. Fitness evaluation involves applying 

these algorithms (with the possible exception of the algorithm for the optional Phase I-

B) to the training set. To describe the fitness evaluation process, we use this notation: 

RN: The set of reliable negative instances.  

P: The set of labelled positive instances. 

U: The set of unlabelled instances. 

P+RN: The combined set of labelled positive and reliable negative instances. 

P(y=1): The probability of an instance being positive, as calculated by the classifier.  

Pseudocode 2 Assess Fitness (Individual, Training set)   

1. Split Training set into 5 Learning and Validation sets; 

2. For each Learning set and corresponding Validation set: 

a. P = all labelled positive instances in Learning set; 

b. U = all unlabelled instances in Learning set; 

c. If spy_flag then RN, U = Phase I-A-Spies(P, U) // call Pseudocode 3, else 

RN, U = Phase I-A(P, U);  // call Pseudocode 4 

d. If Phase_1B_flag then RN, U = Phase I-B(P+RN, U);  // call Pseudocode 5 

e. Train Classifier_2 to distinguish P and RN;  

f. Classify Validation set;  

3. Individual’s Fitness Value = F-measure over the 5 Validation sets; 

Pseudocode 3 Phase I-A-Spies(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Spies = spy_rate% instances, randomly selected from P; 

b. Spy_set = Set ∪ Spies 

c. Run EM(Classifier_1A, P, Spy_set); 

d. Classify all instances in Spy_set; 

e. Set threshold to a value such that spy_tolerance% spies have P(y=1) less than 

threshold; 

f. For each unlabelled Instance in Spy_set: 

i. If P(y=1) < threshold then RN = RN ∪ Instance, U = U – Instance; 

4. Return RN, U; 

 

The fitness of each individual is computed as specified in Pseudocode 2. The Train-

ing set is split into 5 folds for internal cross-validation, creating 5 pairs of Learning and 

Validation sets (step 1). For each pair of Learning and Validation sets, all labelled pos-

itive instances are added to P (step 2.a) and all unlabelled instances are added to U (step 

2.b). The RN set is determined with either the phase I-A-Spies(P, U) or phase I-A(P, 

U) algorithm, depending on the spy_flag parameter, which returns a refined U set (step 

2.c, executing Pseudocode 3/4). If the flag for running phase I-B is set to true, RN and 

U sets are further defined with the phase I-B(P+RN, U) algorithm (step 2.d, executing 
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Pseudocode 5). Classifier_2 is then trained to distinguish P and RN (step 2.e), and then 

used to classify the Validation set (step 2.f). The Fitness Value of the Individual is 

assigned as the F-measure over the 5 Validation set classifications (step 3).  

Pseudocode 3 describes Phase I-A of the two-phase PU learning method, executed 

when spy_flag is True. The RN set is initialised empty (step 1). The set U of unlabelled 

instances is split into Iteration_count_1A subsets (step 2). For each Set in the list of 

subsets, Spies is initialised with spy_rate% of instances of P, randomly selected (step 

3.a) and Set and Spies are combined to form Spy_set (step 3.b). Next, the Expectation 

Maximisation (EM) algorithm is run [9], tuning Classifier_1A on P and Spy_set (step 

3.c). All instances in Spy_set are classified and the threshold is set so that spy_toler-

ance% of spies have P(y=1) less than threshold (step 3.d-e). For each unlabelled In-

stance in Spy_set (excluding the spies), if P(y=1) is less than threshold, they are added 

to RN and removed from U (step 3.f). The resulting RN and U sets are then returned. 

Pseudocode 4 Phase I-A(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Train Classifier_1A on P and Set; 

b. Classify all unlabelled instances in Set; 

c. For each unlabelled Instance in Set: 

i. If P(y=1) < Threshold_1A then RN = RN ∪ Instance, U = U – Instance; 

4. Return RN, U; 

Pseudocode 5 Phase I-B(P+RN, U) 

1. Train Classifier_1B on P+RN; 

2. Classify U; 

3. For each Instance in U: 

a. If P(y=1) < Threshold_1B  

    then RN = RN ∪ Instance,  U = U – Instance  

4. Return RN, U; 

 

Phase I-A of the two-phase PU learning method, executed when Spy_flag is False, 

is described in Pseudocode 4. The RN set is initialised as an empty set (step 1). The set 

U of unlabelled instances is split into Iteration_count_1A subsets (step 2). For each Set 

in the list of subsets, Classifier_1A is trained to distinguish P and Set (step 3.a) and 

used to classify all unlabelled instances in Set (instances previously treated as the neg-

ative set during training) (step 3.b). For each unlabelled Instance, if the instance’s cal-

culated P(y=1) is less than Threshold_1A then Instance is added to RN and removed 

from U (step 3.c.i). The resulting RN and U sets are then returned.  

Phase I-B of the two-phase learning method is described in Pseudocode 5. Classi-

fier_1B is trained to distinguish the positive and reliable negative instances in P+RN 

(step 1) and the resulting classifier is then used to classify U (step 2). For each Instance 
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in U, if the Instance’s calculated P(y=1) is less than Threshold_1B, Instance is added 

to RN and removed from U (step 3). The resulting RN and U sets are returned (step 4). 

4       Datasets and Experimental Methodology 

Experiments were conducted with a stratified 5-fold cross-validation procedure. Each 

dataset is split into 5 folds of about the same size with about the same class distribution, 

and then the methods are run 5 times. Each time, a different fold is used as the test set, 

and the other 4 folds are used as the training set. For each training set, we run the Auto-

ML systems to evolve the best individual configuration. Then, a PU learning classifier 

is built from the training set with the configuration defined by that best individual. The 

classifier is then used to predict all instances in the test set. Precision, recall, and F-

measure are calculated. This process is repeated for the 5 pairs of training and test sets 

in the 5-fold cross-validation, and the reported results are the average over the 5 test set 

results. Each method is evaluated using the same procedure, with the same 5 folds.  

We compare the predictive performance of the two versions of the Auto-ML system, 

GA-Auto-PU [7] (called GA-1) and GA-Auto-PU with the extended search space (GA-

2), and two well-established PU learning methods: DF-PU [10] and S-EM [9]. Perfor-

mance is measured mainly by the F-measure, the most used measure in PU learning 

[11], but we also report a summary of precision and recall results, for completeness. 

The two versions of the GA used the following hyperparameter settings. #Genera-

tions (number of generations) set to 50. Population_size (number of individuals in the 

population) set to 101 (100 individuals generated using crossover, 1 saved with elitism). 

Crossover_prob, the probability that two individuals will undergo crossover, set to 0.9, 

Gene_crossover_prob, the probability that a specific gene will be swapped when the 

individuals undergo uniform crossover, set to 0.5. Mutation_prob, the probability that 

an individual’s gene will undergo mutation, set to 0.1. Tournament_size set to 2. Code 

for both versions of the GA can be found at https://github.com/jds39/GA-Auto-PU.  

Regarding statistical analysis, for each performance measure (F-measure, recall, and 

precision), we compare the performance of the new GA-2 against GA-1 and the above 

two PU learning methods using the non-parametric Wilcoxon Signed-Rank test [19]. 

As this involves testing multiple hypotheses per measure, we use the well-known Holm 

correction [20] for multiple hypotheses. This procedure involves ranking the p-values 

from the smallest to largest (i.e., from most to least significant), and adjusting the sig-

nificance level 𝛼 according to the p-values’ ranking. We set 𝛼 = 0.05 as usual, so the 

first p-value (𝑝
1
) is statistically significant if 𝑝

1
< 0.017. If this condition is not satis-

fied, the procedure stops and 𝑝1, 𝑝2 and 𝑝3 are deemed non-significant. If 𝑝
1
 is deemed 

significant, we then evaluate 𝑝2, which is deemed significant if 𝑝2 < 0.025. If  𝑝2 is 

deemed significant, we then evaluate 𝑝3, which is deemed significant if 𝑝3 < 0.05. 

Table 1 shows the characteristics of each dataset. These datasets are binary datasets 

that are engineered to PU datasets by hiding 𝛿% of the positive class instances in the 

negative set, thus creating an unlabelled set – a common practice in PU learning [11]. 

Note that the Positive-class % column shows the percentage of positive class instances 

before some are hidden in the unlabelled set. 𝛿 takes the values 20%, 40%, and 60%, 

as it is important to test on a wide range of distributions [11].  
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Table 1. Dataset characteristics. 

Dataset 

No.  

instances 

No.  

features 

Positive-class 

% 

Alzheimer’s [21] 354 9 10.73% 

Autism [22] 288 15 48.26% 

Breast cancer Coimbra [22] 116 9 55.17% 

Breast cancer Wisconsin [22] 569 30 37.26% 

Breast cancer mutations [23]   1416 53 32.42% 

Cervical cancer [22] 668 30 2.54% 

Cirrhosis [24] 277 17 25.72% 

Dermatology [22] 359 34 13.41% 

Pima Indians Diabetes [22] 769 8 34.90% 

Early Stage Diabetes [25] 521 17 61.54% 

Heart Disease [22] 304 13 54.46% 

Heart Failure [26] 300 12 32.11% 

Hepatitis C [22] 590 13 9.51% 

Kidney Disease [22] 159 24 27.22% 

Liver Disease [22] 580 11 71.50% 

Maternal Risk [22] 1014 6 26.82% 

Parkinsons [22] 196 22 75.38% 

Parkinsons Biomarkers [27] 131 29 23.08% 

Spine [22] 311 6 48.39% 

Stroke [28] 3427 15 5.25% 

5       Computational Results 

Table 2 shows the F-measure values achieved by all methods across the datasets for 𝛿 

= 20%. GA-2 achieved the highest number of wins with 10.5, followed by GA-1 with 

7.5. GA-2 outperformed DF-PU and S-EM with statistical significance (p=0.00002, 

Holm’s adjusted α=0.017 for DF-PU; p=0.0008, Holm’s adjusted α=0.025 for S-EM), 

but there was no significant difference between GA-2 and GA-1 (p=0.7841, α=0.05).  

This trend continued for 𝛿 = 40%, as shown by Table 3. GA-2 achieved the highest 

number of wins with 8, followed by GA-1 with 5. GA-2 significantly outperformed 

DF-PU (p=0.0003, adjusted α=0.017) and S-EM (p=0.0073, adjusted α=0.025), but 

there was no significant difference between GA-2 and GA-1 (p=0.7562, α=0.05). 

For 𝛿 = 60%, shown in Table 4, GA-1 and S-EM performed best with 6 wins each, 

followed by GA-2 with 5 and DF-PU with 3. GA-2 significantly outperformed DF-PU 

(p=0.0023, adjusted α=0.017), but there was no significant difference between GA-2 

and GA-1 or S-EM (p=0.4980, adjusted α=0.025 GA-1; p=0.5706, α=0.05 S-EM). In 

total, across all Tables, GA-2 performed best with 23.5 wins, followed by GA-1 with 

18.5, S-EM with 10.5, and DF-PU with 7.5.  

Table 5 summarises the Precision and Recall values achieved by each method, show-

ing the number of wins (out of 20 datasets) of each method and whether GA-2 per-

formed statistically significantly better or worse than another method, for each measure 

and for each 𝛿 = 20%, 40%, 60% (the full results per dataset are not shown due to lack 
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of space). In terms of recall, DF-PU performed best overall, with GA-2 performing 

worst. GA-2 performed significantly worse than DF-PU for all 3 𝛿 values. However, 

DF-PU generally predicted almost all instances as positive, thus achieving near 100% 

recall, but near 0% precision. Such classification is unhelpful, representing a bad trade-

off between precision and recall, which led to the inferior results for DF-PU regarding 

F-measure, as shown earlier. GA-2 performed best in terms of Precision, significantly 

outperforming both DF-PU and S-EM for the 3 𝛿 values. 

Table 2. F-measure values achieved by the four methods for 𝛿 = 20%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.529 0.548 0.195 0.321 

Autism 0.960 0.982 0.648 0.820 

Breast cancer Coi. 0.705 0.711 0.697 0.711 

Breast cancer Wis. 0.954 0.956 0.543 0.898 

Breast cancer mut. 0.893 0.896 0.489 0.892 

Cervical cancer 0.828 0.867 0.061 0.054 

Cirrhosis 0.573 0.446 0.405 0.436 

Dermatology 0.860 0.901 0.228 0.718 

Pima I. Diabetes 0.677 0.642 0.516 0.534 

Early Diabetes 0.958 0.978 0.761 0.792 

Heart Disease 0.843 0.836 0.705 0.811 

Heart Failure 0.770 0.751 0.487 0.529 

Hepatitis C 0.953 0.944 0.176 0.695 

Kidney disease 0.976 0.925 0.428 1.000 

Liver disease 0.834 0.831 0.834 0.816 

Maternal health 0.476 0.862 0.403 0.454 

Parkinson’s 0.860 0.935 0.856 0.815 

Parkinson’s Biom. 0.476 0.282 0.354 0.333 

Spine 0.652 0.923 0.652 0.820 

Stroke 0.474 0.241 0.086 0.102 

Total wins 7.5 10.5 0.5 1.5 

Table 3. F-measure values achieved by the four methods for 𝛿 = 40%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.551 0.576 0.194 0.370 

Autism 0.927 0.940 0.648 0.841 

Breast cancer Coi. 0.687 0.671 0.711 0.704 

Breast cancer Wis. 0.932 0.936 0.543 0.903 

Breast cancer mut. 0.868 0.739 0.489 0.893 

Cervical cancer 0.903 0.839 0.042 0.053 

Cirrhosis 0.464 0.397 0.401 0.442 

Dermatology 0.780 0.896 0.229 0.718 

Pima I. Diabetes 0.649 0.646 0.516 0.526 

Early Diabetes 0.895 0.887 0.756 0.859 

Heart Disease 0.801 0.780 0.705 0.828 

Heart Failure 0.652 0.670 0.486 0.508 

Hepatitis C 0.771 0.863 0.171 0.708 

Kidney disease 0.988 0.951 0.428 1.000 

Liver disease 0.803 0.817 0.832 0.587 

Maternal health 0.812 0.813 0.395 0.434 

Parkinson’s 0.836 0.843 0.860 0.748 

Parkinson’s Biom. 0.265 0.259 0.354 0.261 

Spine 0.907 0.917 0.652 0.839 

Stroke 0.255 0.239 0.094 0.102 

Total wins 5 8 4 3 
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The performance of GA-2 did come at a computational cost, compared with DF-PU 

and S-EM. Whilst DF-PU and S-EM took about 4.9 minutes and 1.5 minutes on average 

per dataset respectively, GA-2 took about 3.7 hours. As such, GA-2 was 45x slower 

than DF-PU, and 150x slower than S-EM. All experiments were run on a 48 core GPU 

with 256GB of memory.  

Table 4. F-measure values achieved by the four methods for 𝛿 = 60%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.456 0.529 0.1711 0.3727 

Autism 0.910 0.927 0.6447 0.8351 

Breast cancer Coi. 0.510 0.553 0.6966 0.6988 

Breast cancer Wis. 0.906 0.866 0.5392 0.9038 

Breast cancer mut. 0.854 0.872 0.4853 0.8922 

Cervical cancer 0.714 0.350 0.0444 0.0459 

Cirrhosis 0.443 0.204 0.4046 0.4589 

Dermatology 0.828 0.692 0.2194 0.7188 

Pima I. Diabetes 0.606 0.634 0.5145 0.5442 

Early Diabetes 0.930 0.894 0.7589 0.7925 

Heart Disease 0.785 0.786 0.7024 0.8290 

Heart Failure 0.674 0.671 0.4815 0.5571 

Hepatitis C 0.588 0.610 0.1596 0.6087 

Kidney disease 0.754 0.806 0.4279 0.9512 

Liver disease 0.804 0.748 0.8338 0.7880 

Maternal health 0.735 0.738 0.3895 0.4380 

Parkinson’s 0.818 0.792 0.8596 0.7619 

Parkinson’s Biom. 0.233 0.280 0.3671 0.3310 

Spine 0.818 0.761 0.6522 0.8300 

Stroke 0.255 0.243 0.0937 0.1022 

Total wins 6 5 3 6 

Table 5. Summary of Recall and Precision results across all datasets. 

 Number of wins regarding Recall Statistical significance results 

(> means better, < means worse) δ GA-1 GA-2 DF-PU S-EM 

20% 3.83 0 10.33 5.83 GA-2 < DF-PU (p=0.00001) 

40% 0 0 14.5 5.5 GA-2 < DF-PU (p=0.00002) 

GA-2 < S-EM (p=0.0136) 

60% 0 0 14 6 GA-2 < DF-PU (p=0.000002)  

GA-2 < S-EM (p=0.00001) 

δ Number of wins regarding Precision Statistical significance results 

20% 7.83 10.83 0 1.33 GA-2 > DF-PU (p=0.00001) 

GA-2> S-EM (p=0.0003) 

40% 7.33 11.33 0 1.33 GA-2 > DF-PU (p=0.001) 

GA-2 > S-EM (p=0.001) 

60% 9.33 10.33 0 0.33 GA-2 > DF-PU (p=0.00001)  

GA-2 > S-EM (p=0.0001) 

6       Conclusions 

We recently proposed GA-Auto-PU, the first GA-based automated machine learning 

method for PU learning [7]. In this work we presented an improved version of the sys-

tem which features an extended search space, incorporating spy-based heuristic meth-

ods into the genes of the individuals, which allows the creation of more sophisticated 
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PU learning algorithms. This new version of GA-Auto-PU was extensively compared 

against two established and well-performing PU learning methods, as well against the 

previous version of the system, across three distributions of engineered PU learning 

data in 20 datasets (representing in total 60 different PU learning problems). The new 

version of the system outperformed the previous version in general, and the new version 

outperformed the PU learning baselines with statistical significance in regard to F-

measure, the most used performance measure in PU learning [11]. An analysis of the 

results for recall and precision (used to compute the F-measure) showed that the new 

system significantly outperforms the two baseline methods regarding precision, but it 

is significantly outperformed by the two baselines in most cases regarding recall.  

Future work will look to explore other search and optimisation methods, such as 

Bayesian Optimisation, as well as expanding the GA’s search space to include other 

types of PU learning methods. 
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Abstract. Vacuum tube amplifiers present sonic characteristics often
coveted by musicians, that are due to the distinct distortion of their
circuits and accurately modeling such effects can be a challenging task.
A recent rise in machine learning has lead to the ubiquity of neural
networks in all fields including virtual analog modeling. This has lead
to the appearance of a variety of architectures tailored to this task. We
aim to provide an overview of the current state of the research in neural
emulation of distortion circuits.

Keywords: audio effects modeling · neural networks · deep learning.

1 Introduction

Guitarists tend to prefer the sound of vacuum tube amplifiers. Yet, their short-
comings include elevated cost and weight, and high power consumption. Digital
emulation can circumvent some downsides and is divided into three categories.
1) White-box methods emulate each electronic component. 2) Black-box tries to
match the output signal by applying custom functions to the input. 3) Gray-box
methods comprise a block-oriented structure inspired by internal information of
the device but disregard the behaviour of each of the individual components.
These “traditional” methods present some drawbacks. White-box methods are
time-consuming as they require hundreds of electronic components to be deter-
mined by hand for each amplifier. Moreover with white and gray-box methods it
is necessary to repeat the modeling process for each circuit. Black-box methods
can struggle to accurately approximate the nonlinear mapping of the amplifier.
The computational cost of these methods is also prohibitive for real-time (RT)
use, a fundamental factor to be considered in Virtual Analog (VA) modeling.
Neural networks seem suited for tube amplifier emulation as their nonlinear ac-
tivation functions resemble vacuum tubes distortion. They also reduce the time
needed to create a new model as only the training data needs to change.

This work presents an overview of newly emerging neural approaches in dis-
tortion modeling with the aim of identifying future research topics. The structure
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is as follows: White, gray, and black-box approaches are first introduced. The
neural networks used for amplifier emulation are then detailed. Finally, the dis-
cussion underlines the future research avenues to improve upon.

2 Traditional Methods

2.1 White-Box

White-box methods model the physical device using internal information of the
amplifier to establish a system of differential equations. The main methods are
state-space models, Modified Nodal Analysis (MNA), the port-hamiltonian (PH)
formalism and Wave Digital Filters (WDF). Nodal analysis is used in circuit sim-
ulation techniques to establish the system of equations to be solved in matrix
form. MNA extends this to incorporate auxiliary equations into the system [35].
The most well-known electronic circuit simulator, SPICE (Simulation Program
with Integrated Circuit Emphasis), uses a combination of component-wise dis-
cretization of the circuit and MNA to create the system. The WDF approach
constructs digital filters based on the traveling-wave formulation of the physical
elements of the device [35]. State-space models rely on the principle that the
equations of motion for any physical system may be formulated in terms of the
state of the system: x′(t) = ft(x(t), u(t)) where x(t) is the state of the system at
time t, u(t) is a vector of external inputs and the function ft specifies how x(t)
and u(t) cause a change in the state. The PH formalism is a state-space repre-
sentation that is structured based on the various energies of a system and their
dynamics. Each of these methods translates the circuit diagram of an amplifier
into a set of equations that completely describes it which is then discretized
in order to be solved. To establish these equations, access to the circuit dia-
gram or study of the internal structure of the amplifier is necessary and results
in a labor-intensive task. Moreover, the resolution of these equations relies on
computationally expensive iterative methods or storing lookup tables and the
component values measured can also introduce inaccuracies into the emulation.

2.2 Gray-Box

Gray-box methods alleviate some of the labour of white-box as they model the
amplifier using conceptual processing blocks (i.e. dynamic, linear, nonlinear),
simplifying the model [5]. The Wiener-Hammerstein method has been described
as the “fundamental paradigm of electric guitar tone” [10] and is used in com-
mercial products such as Fractal Audio’s Axe-Fx [10]. Eichas and Zölzer [5] pro-
posed using iterative methods to optimize the block topology. Gray-box methods
require less CPU than white-box methods but struggle with the emulation more.

2.3 Black-Box

Black-box methods only require the input and output signals of an amplifier to
emulate it. They can also replicate idiosyncrasies that can exist in the analog de-
vices. The main methods are Volterra series, dynamic convolution, block-oriented
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structures, and kernel regression. Dynamic convolution is a variant of a method
used for linear systems in which instead of a single impulse response used to
derive the transfer function of the DUT, multiple impulses are used at different
amplitudes to approximate the nonlinear behavior [20]. Gillespie et al. [12] used
a Support Vector Machine (SVM) to emulate a common-cathode tube amplifier
via kernel regression. While this method is theoretically solid, the choice of the
mappings and kernel function can be difficult. Artificial Neural Networks (ANN)
are a class of Machine Learning (ML), black-box method that use neurons and
nonlinear activation functions frequently found in VA modeling to emulate vari-
ous nonlinearities. Similarities between a number of ANN and certain black-box
methods can be drawn and suggest that they would be well suited to the task of
tube amplifier emulation and will be discussed in a future section. Volterra series
[27] are functional expansions of multidimensional convolution kernels that em-
ulate the “memory” effect of an amplifier as the output of the nonlinear system
is dependent on the input at previous times steps. The block-oriented struc-
tures presented previously can also fall under the scope of black-box methods
[6]. Overall, these methods remain computationally expensive and/or tend to
struggle when simulating very high levels of nonlinearity.

3 Neural Network-based Methods

ANN are a class of ML algorithm whose basic structure is made up of neurons
and often nonlinear activation functions. These neurons are organized into lay-
ers and comprise multiplication by weights, with optional bias added, followed
by the activation. The network parameters are learnt via minimization of a dis-
tance between the target and the network output, enabling the network to learn
complex nonlinear mappings making this method suited to distortion model-
ing. However, amplifier modeling via ANN is not a straight forward task. The
deep models used in other fields can pose a problem for RT use. Processing raw
waveforms in the time domain means that we have to deal with high temporal
dimensionality because of the sampling rates for high-quality audio. This in-
creases the computational cost and the complexity of the task, rendering music
Deep Learning (DL) challenging. A number of DL architectures have appeared
in distortion circuit modeling in recent years including various configurations of
both convolutional and recurrent layers. Here, we study these recent works.

3.1 Architectures

The main categories of architectures that have populated the state-of-the-art
are convolutional, recurrent, and hybrid models. The first instances of Convo-
lutional Neural Networks (CNN) for distortion effects modeling were applied to
the emulation of amplifiers [3] and for distortion pedals [4], where Damskägg et
al. use a feedforward variant of the WaveNet from [23], originally for speech syn-
thesis. This variant contains dilated causal convolutions. A dilated convolution
uses increased kernel size to include spaces between elements for larger field of
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view, in order to better model long-term dependencies, without increased com-
putational cost. These dilated convolutions are causal so only past information
is used. Two models of different sizes are presented [3] and compared to a block-
oriented model [6] and a Multi-Layer Perceptron (MLP) on modeling a Fender
Bassman 56F-A preamplifier. The larger WaveNet outperformed the others in
objective and subjective evaluation. Their follow-up article [4] focuses more on
the RT possibilities of the WaveNet applied to pedal emulation. Their WaveNet
is slightly modified in this work. A trade-off between accuracy of the method
and computational load as well as the minimum amount of data required for
training was studied. For this, three different configurations were compared on
three effects pedals: Ibanez Tube Screamer, Boss DS-1, and an Electro-Harmonix
Big Muff Pi. A modified version of the feedforward WaveNet, Temporal Con-
volutional Network (TCN), was used for more efficient computation for RT use
of models with more complex nonlinear behaviour [31]. The authors show that
by using shallow networks with large dilation factors comparable performance
was achieved with greater efficiency. Both causal and noncausal versions of this
modified architecture were tested to emulate a LA-2A dynamic range compres-
sor. They achieved similar performance but the noncausal variants performed
slightly better in the time domain. The results of listening tests indicated that
a small difference was perceived in the models compared to the reference.

The first article presenting the use of Recurrent Neural Networks (RNN)
for vacuum tube amplifier modeling uses a Nonlinear AutoRegressive eXoge-
nous (NARX) network [2]. A NARX network is similar to plain RNN but with
limited connectivity to remedy the vanishing and exploding gradient problems
frequently encountered. The audio quality of this method was reported to be
low when modeling a 4W Vox AC4TV tube amplifier either due to insufficient
training or limited model capacity. A follow-up work [36] studies the use of Long
Short Term Memory (LSTM), first proposed in [11], for the task of amplifier
modeling. Again a 4W Vox AC4TV was chosen. LSTM is a RNN variant that
incorporates the use of forget, input and output gates to control information flow
through each recurrent layer in order to again avoid gradient problems of regular
RNN. The models used were configured as multi-layer networks. The number of
recurrent and hidden units, and sequence length used varied for their tests. Dur-
ing subjective listening tests, the audio quality of the network was not deemed
satisfactory by semiprofessional guitarists. Wright et al. test a new LSTM ar-
chitecture along with another RNN variant, the Gated Recurrent Unit (GRU)
in [33] and both are compared to the WaveNet architecture from [4]. The GRU,
like LSTM, aims to remedy gradient problems by controlling information flow
through the recurrent cell. The computations carried out in a GRU are similar
to those of LSTM but with the various gates of the latter replaced with a sin-
gle update gate for reduced complexity. The architecture used is comprised of a
recurrent layer followed by a fully connected (FC) one, preliminary experiments
showed that adding recurrent layers had little effect on the audio quality. This
method was used to model a pedal (Big Muff) and a combo amplifier (Blackstar
HT-1) [33]. In terms of objective quality, the most accurate RNN outperformed
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the WaveNet for the pedal and the most accurate WaveNet outperformed the
RNN for the amplifier with LSTM outperforming the GRU in terms of accuracy
with roughly the same processing time. In a follow-up article [32], further com-
parisons between the RNN from [33] and various WaveNet configurations were
carried out for the modeling of two vacuum tube amplifiers: a Blackstar HT-5
Metal and a Mesa Boogie 5:50 Plus. These configurations were trained and com-
pared in order to gauge the RT capabilities (in C++) and the audio quality. The
LSTM provides better processing speeds than the WaveNet models however the
largest WaveNet was better able to model the highly nonlinear HT5M amplifier.

Distortion effects can be emulated by various ANN architectures [28]. In this
work, eight architectures are tested and compared including four LSTM net-
works, one hybrid convolutional LSTM, one MLP, one CNN, and one hybrid con-
volutional RNN. The most notable architectures of this work are: The parametric
LSTM where the input dimensions are extended to take into account the ampli-
fier parameters; The convolutional LSTM in which two 2D convolution layers are
used to reshape the inputs for GPU parallelization; The sequence-to-sequence
LSTM which outputs a buffer instead of a single sample. All architectures vary
in terms of accuracy and RT performance but the hybrid convolutional LSTM
presented the best Computation Time (CT) and accuracy trade-off. Another
category of hybrid method includes autoencoders such as those presented in the
works of Martinez-Ramirez et al. [26]. The general structure of an autoencoder
comprises: an encoding front-end, a latent space, and a decoding back-end. This
structure enables the model to learn an approximate copy of the input, forcing
it to prioritize useful properties of the data. A convolutional autoencoder with
FC latent space (dubbed CAFx) was presented with the following structure: A
convolutional adaptive front-end, a latent-space of two dense layers, and a FC
decoder. This architecture was used to model three effects of the IDMT-SMT-
Audio-Effects dataset [17]: distortion, overdrive, and equalization (EQ). This
architecture was modified by replacing the FC layers with Bidirectional LSTM
(i.e. LSTM containing forward and backward information at every time step)
to create a convolutional and recurrent autoencoder (CRAFx) to model more
complex audio effects also from [17]. Another variant of this architecture uses a
feedforward WaveNet in the latent space (CWAFx) and the three autoencoders
are compared with the original WaveNet architecture [4] on various tasks includ-
ing modeling a vacuum tube amplifier, sampled from a 6176 Vintage Channel
Strip unit. The results showed that both the WaveNet and CAFx performed
similarly but they are both outperformed by CRAFx and CWAFx with CRAFx
performing slightly better than CWAFx. It was reported that the preamplifier
was able to be successfully modeled on the two-second samples.

3.2 White-box and Gray-box Approaches

Neural networks are black-box by nature but in recent years they have started
to be integrated into gray and white-box methods. The following works fall into
the category of gray-box approaches. Parker et al. present the State Trajectory
Network (STN) [24] which is a method of integrating neural networks into a
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State-Space model by adding circuit component values (e.g. voltages) to the
training data for a more accurate simulation. A number of distortion circuits are
tested, including a second-order diode clipper. Results show that this method
is viable as all the circuits modeled were said to be indistinguishable from the
targets in informal listening tests however the training can be unstable [24],[25].
Aleksi Peussa augments the STN in his Masters thesis [25] to include recurrence
using a GRU and compares this to both the original STN and a black-box GRU.
This work confirms the STN’s training instability as it was unable to model a
Boss SD-1 pedal. Although the State-Space GRU was able to emulate this pedal,
it was outperformed by its black-box equivalent. However the state-space model
managed to outperform the black-box one when applied to a Moog ladder filter
due to its self-oscillatory nature. Kuznetsov et al. [21] explore the idea of differ-
entiable Infinite Impulse Response (IIR) filters using the Differentiable Digital
Signal Processing (DDSP) library, which enables the integration of classic DSP
elements in a differentiable setting [7]. The authors present the link between IIR
filters and RNN and present a Wiener-Hammerstein model using differentiable
IIR filters to emulate a Boss DS-1 distortion pedal, compared with a simple
convolutional layer as a baseline. None of the models were able to fit the data
perfectly using this method. Differentiable IIR filters are explored further as a
cascade of differentiable biquads to model a distortion effect [22]. The proposed
model is said to have significantly fewer parameters and reduced complexity com-
pared to black-box ANN. This method was used to model a Boss MT-2 distortion
pedal and comparison with WaveNet showed that the parametric EQ cascaded
biquads outperformed the other representations as well as the WaveNet. Finally,
white-box methods have also started to appear. Esqueda et al. [8] implement a
white-box model in a differentiable form which allows approximate component
values to be learned, thus remedying the accuracy problems of white-box model-
ing due to lack of access of exact component values. This method was tested on
a Fender, Marshall, Vox tone stack as well as an Ibanez TS-808 Overdrive stage
in order to validate the proposed model. The performance of any network no
matter the category of approach is directly determined by a number of choices
made regarding the training process. Notably, the choice of dataset is critical.

3.3 Datasets

The performance of ANN for any given task depends heavily on the dataset
they are trained on. The network needs to be exposed to a wide range input-
output pairings to generalize well. A number of datasets used for the task of
amplifier modeling bear certain similarities. Almost all of the data used com-
prises clean guitar Direct Input (DI) sent through either the analog device or a
SPICE simulation. However, the data used depends on the approach. In black-
box approaches only input-output recordings are necessary whereas for gray or
white-box different or additional data is required. In the gray-box approaches
presented ([24],[22],[21],[25]), component values of the internal circuit are also
used in the training data. In the white-box approach [8], only the circuit com-
ponent values are used. In the black and gray-box approaches, certain aspects
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of the training data, namely the sampling rate, the length, and type of the data,
have a significant impact on the resulting model. The sampling rate dictates
the audio quality of the simulation and impacts its RT capabilities. The data
used in [3] was obtained from a SPICE simulation of a Fender Bassman 56F-A
preamplifier applied to DI from the Freesound dataset [9] at 44.1 kHz. A total of
4 hours of data was used for the train set and 20 minutes for validation split into
100 ms segments and a random gain value was applied for more dynamic range.
Damskägg et al. show that as little as three minutes of data is sufficient for the
training of the CNN [4], although final results presented were obtained with five
minutes of data (50% guitar and 50% bass) from the IDMT-SMT-Guitar/Bass
datasets [18], [19]. These datasets contain a variety of single note recordings of
various different playing styles with varying pickups. The raw inputs were sent
through three effects pedals: Ibanez Tube Screamer, Boss DS-1 and an Electro-
Harmonix Big Muff Pi. This dataset was also used to train the RNN from [33].
The amplifier models of [32] used a different training set than the pedal emu-
lation, taken from a pre-existing dataset. This dataset was tailor-made for this
modeling task [29]. It includes five different styles of guitar sounds sent through
various amplifiers with their gain parameters set to different levels. The audio
used in [32] consists of around three minutes of guitar audio at 44.1 kHz with
the training set consisting of 2 minutes 43 seconds. This data was used for both
the WaveNet and the LSTM. The SignalTrain dataset [13] was used for train,
test and validation of the shallower TCN architectures. This dataset contains
input-output recordings at 44.1 kHz of various instruments from a LA-2A dy-
namic range compressor. The training data used for the NARX network of [2]
was comprised of both signals from a function generator and an electric ampli-
fier. All training data was recorded at 96 kHz. The recordings from this dataset
were also used for the LSTM in [36]. As the choice of training data has a deci-
sive impact on the performance of a neural network, so does the choice of cost
function used in the optimization process.

3.4 Loss Functions & Evaluation Metrics

Training ANN is an optimization problem in which we often aim to minimize a
given loss function representing the error between the prediction and the target.
It must therefore accurately depict the perceptual difference between signals.
This is often not the case with objective losses such as the Mean-Squared Er-
ror (MSE). MSE and similar time domain losses are computed directly on the
signal’s waveform which does not perfectly correspond to human perception.
To improve the accuracy, spectral information can also be included but this
approach presents its own problems and most of the losses used remain time
domain-based. The most widely known, the MSE, is one of the most used for
training ANN in distortion circuit simulation. It was used in one of the first
articles presenting RNN for amplifier modeling [36] as well as in all of the gray-
box methods presented previously, including a normalized variant used in [24]
in order to stabilize the initial training of the network. Similar losses include
the Root MSE (RMSE) used in [2] and the Normalized Root MSE (NRMSE)
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used in [28]. Despite having relatively widespread use, the MSE based losses
lack perceptual accuracy. Another loss function frequently encountered is the
Error-to-Signal Ratio (ESR) defined as:

LESR =

∑N−1
i=0 |y[i]− ŷ[i]|
∑N−1

i=0 (y[i])2
(1)

Variants of this loss have been used in the works of Damskägg et al. [3],[4] and
Wright et al. [33],[32] with pre-emphasis filtering for better perceptual accuracy.
In Damskägg et al., the high-pass pre-emphasis filter with the transfer function
H(z) = 1 − 0.95z−1 was used to train their WaveNet as it was found that the
model struggled at higher frequencies initially. To train the RNN, Wright et al.
apply a different pre-emphasis filter with transfer function H(z) = 1 − 0.85z−1

to the ESR along with a term to compensate for a DC offset in the prediction:

LDC =
( 1
N

∑N−1
i=0 (y[i]− ŷ[i]))2

1
N

∑N−1
i=0 (y[i])2

(2)

In a further work [34], various pre-emphasis filters and weightings are studied
and compared to gauge which combination better reflects perceptual quality.
The filters with the following transfer functions were tested: First-Order High-
Pass (HHP(z) = 1−0.85z−1), Folded Differentiator (HFD(z) = 1−0.85z−2) and
First-Order Low-Pass (HLP(z) = 1+0.85z−1). The low-pass filter is preceded by
A-weighting which aims to mimic the equal loudness curves of the human ear.
Listening tests showed that pre-emphasis filtering enabled better accuracy during
modeling, with the A-weighted low-pass filtering achieving the best performance.
The Mean Absolute Error (MAE) is also used in both a time domain formulation
and a spectral variant. The MAE is defined as

LMAE =
1

N

N−1∑

i=0

|ŷ[i]− y[i]| (3)

and was used to train the autoencoders in [26]. Steinmetz et al. [31] use a com-
bination loss comprising both time domain, using MAE, and spectral features.
For the spectral magnitude, the Short-Term Fourier Transform (STFT) loss
[1] is used, leading to the following cost function (∥.∥F the Frobenius norm):
LMAE + LSTFT with LSTFT = LSC + LSM where

LSC =
∥|STFT(y)| − |STFT(ŷ)|∥F

∥|STFT(y)|∥F
and (4)

LSM =
1

N
∥log(|STFT(y)|)− log(|STFT(ŷ)|)∥1 , (5)

The loss functions used for training can also be applied to the evaluation pro-
cess for an objective measure of performance. These losses must be differentiable
to be used in the gradient-based optimization. Non-differentiable functions and
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subjective listening tests constitute other methods of evaluation to provide a
more comprehensive assessment of the quality during testing. While objective
metrics struggle to properly reflect the perceptual aspects of the output, lis-
tening tests take time to implement and hinder continuous integration of ML
systems. Therefore, there is need for objective evaluation metrics. Most of the
evaluation methods used for this task rely on reuse of the loss functions used
during training or a variation thereof. Damskägg et al. [4] use pre-emphasized
ESR for training and plain ESR for evaluation. While simple to implement, a
single objective metric cannot replace subjective listening tests. The listening
tests that are mainly used for this task rely on MUltiple Stimuli with Hidden
Reference and Anchor (MUSHRA) testing. In MUSHRA, the participants are
presented with a labeled reference, various test samples, an unlabeled reference,
and an anchor [14]. A similar framework used to carried out listening tests with
human participants is the Web Audio Evaluation Tool [16] based on the HTML5
Web Audio API for perceptual audio evaluation. For the objective evaluation of
the models compared in [31], three metrics were used: the MAE and the STFT
loss described above and a perceptually informed loudness metric that uses the
loudness algorithm from the ITU-R BS. 1770 Recommendation [15]. A listening
test similar to MUSHRA was also carried out using the WebMUSHRA interface
[30] to further validate the accuracy of the models. The results of this test in-
dicated that a small difference was perceived among the models in comparison
to the reference. WebMUSHRA was again used in [32] and showed the largest
WaveNet to be the most perceptually accurate model of the HT5M amplifier,
although this prediction could still be distinguished from the original amplifier.
The largest LSTM proved to be the closest to the Mesa 5:50 amplifier in terms
of subjective quality and most people could not tell the difference between the
model and the target. For the work established in Thomas Schmitz’s PhD thesis
[28], a number of objective metrics as well as listening tests were presented. One
listening test studies the number of parameters that can be reduced without
loss of accuracy and the other is used to determine the threshold of a given
metric above which the accuracy is no longer improved. An overview of the
evaluation methods is presented in here: Objective: MSE [36], RMSE [2] [28],
NRMSE [28], Spectrogram [28], Power Spectrum [28], Harmonic Analysis using
ESS [28], Waveform plot [28] [33] [32], SNR [28], Difference in harmonic content
[28], MAE [26], ESR [33] [32] [4] [3], Frequency spectrum [4] [3], MS MSE [26],
MFCC COSINE [26], Spectra of 1245-Hz sinusoid to study aliasing [4], AME
[25], CT [28] [4] [3] [32], Custom metric taking into account RMSE + CT [28].
Subjective: Aural comparison of prediction and target [36], 2 listening tests
[28], MUSHRA [3] [32], Web audio evaluation tool [26], pre-emphasized ESR
[34].

The audio quality of the prediction is not the only aspect that requires eval-
uation. The RT capabilities are crucial to take into account when studying VA
models and can also be presented as an objective metric of the emulation quality.
This is illustrated in the last two objective methods listed above that take into
account the CT.
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3.5 Real-Time Capabilities

A major factor to take into account in VA modeling is the RT constraint. If
the simulation cannot process in RT then it is of little use to the users. The
RT constraint for this application is approximately 10 ms. Any latency above
this is likely to be perceived by the musician and hinder their playing. The
latency produced in digital audio is not limited to only the CT of the Digital
Signal Processing (DSP) algorithm used which significantly decreases the time
left for the DSP computations. This means that using DL architectures with
a lot of computations is complicated as it either entails too high a latency or
excessive CPU usage. A number of the architectures are capable of RT to a
degree but caveats also exist. The architectures although often capable of RT
processing, some of which are light-weight enough to work in RT on CPU, are still
computationally heavy and have not been demonstrated to be able to achieve RT
speeds for sampling rates over 44.1 kHz. The hybrid convolutional and recurrent
architecture from [28] utilizes GPU parallelization to process the data in RT
which poses a problem when CPU processing is required. The autoencoders[26]
have been demonstrated using a sampling rate of 16 kHz which is insufficient for
high-quality audio applications. The shallow TCN [31] are capable of RT use only
for buffer sizes over 1024 samples, which at 44.1 kHz incurs a latency of around
23.2 ms, over double the RT constraint of 10 ms. Finally the architectures of
[32], although capable of RT processing, remain computationally heavy, even at
44.1 kHz which is the lower bound for high quality in music applications. Digital
implementations can introduce aliasing. To remedy this, anti-aliasing techniques
are used which often require upsampling the signals by a factor of eight [35] which
greatly increases the number of samples to be processed, further restraining the
allowed CT of the DSP algorithm. This also applies to ANN although formal
study of the aliasing introduced is lacking.

Here we present an overview of the RT capabilities of the architectures in
the state-of-the-art in terms of their Real Time Factor (RTF) with RTF =
Processing Time
RT constraint . RTF lower than 1 is required for RT operation. The sampling

rate used is 44.1 kHz unless stated otherwise: The two-layer LSTM and the
three-layer MLP [28] have a RTF of 1.39 and 0.24 respectively on GPU. The
WaveNet amps [3] had RTF equal to 0.16 (WaveNet1) & 0.33 (WaveNet3) in
Python whereas the WaveNet pedals [4] had RTF of 0.53 (WaveNet1) & 0.91
(WaveNet3) in C++. The CRAFx architecture [26] had RTF of 1.44 in Python
on CPU at 16 kHz. The single-layer LSTM & GRU [33] had RTF of 0.097 for the
fastest RNN & 0.41 for the slowest, estimated on CPU. And the CWAFx [26] had
1.48 in Python on CPU at 16 kHz. Finally, the shallow TCN [31] was capable
of RT for large frame sizes in Python on CPU. A number of architectures are
capable of RT use, even on CPU. However, the RT measures presented in here
vary in a number of ways including: the sample rate used,the processing unit,
the implementation language, and the RTF definition (number of operations,
timing the inference, etc.). This makes formal comparison challenging.
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4 Discussion

Overall, the wide range of parameters used in the state-of-the-art make a for-
mal comparison of the architectures complicated. To remedy this, we chose at
least one model from each class of networks and trained them using the same
data and loss function. This allows for a clearer comparison. The dataset used
for training is from [29], using 80% for the training data and 20% for testing.
The sampling rate used is 44.1 kHz and the comparison is limited to black-box
approaches. The loss function is ESR without pre-emphasis filtering. A DC term
was added to the ESR when training the recurrent network as the predictions
from model are known to have an amplitude offset. The training parameters
for each network are the following: LSTM: Sequence-to-sequence LSTM with
32 recurrent units; WaveNet: Number of channels = 12; dilation depth = 10;
kernel size 3; Convolution LSTM: Number of channels = 35; stride = 4; ker-
nel size = 3 (for both convolution layers); Shallow-TCN: Number of channels
= 32; number of blocks = 4; stack size = 10; dilation growth = 10. The Shal-
low TCN was trained for 150 epochs instead of the original 60 to account for
the difference in training data and loss and all the other networks were trained
until an early stopping condition was met. For each model tested, we present a
number of objective metrics as well as the inference speeds. The STFT reported
is the Aggregate STFT [1]. Table 1 shows that the Shallow TCN outperforms

Table 1. Black-box architecture comparison. We define the Real-Time factor here to
be RTF = Processing Time

RT constraint
. RTF lower than 1 is required for RT operation. All results

reported were recorded in Python on CPU (AMD Ryzen 7 3750H CPU at 2.3GHz).

Architecture RTF MSE ESR MAE STFT

RNN (LSTM-32) [33] 0.51 0.0040 0.0244 0.0378 0.5952

CNN (WaveNet) [3] 0.35 0.0703 0.4337 0.1359 0.6542

Hybrid (Conv-LSTM) [28] 3.25 0.0069 0.0423 0.0530 0.6937

CNN (Shallow TCN) [31] 0.14 0.3190 2.1371 0.4510 1.2348

the other architectures in terms of processing speed but for significantly lower
objective quality. The lower quality could be due to insufficient training as this
network was trained for a fixed number of epochs. The LSTM with 32 units out-
performs all other models in terms of objective measures but is outperformed
by the CNN in terms of processing speed. This is contradictory to the results
presented in Wright et al. [32] which show that most LSTM models were able
to outperform the WaveNet models in terms of CT. This difference could be
due to the evaluation method as Wright et al. report CT of an optimized C++
implementation of both networks and the results presented here were all obtain
using Python. The hybrid conv-LSTM network from Schmitz et al. [28] ranks
highly in terms of objective quality but is incapable of RT use without GPU
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parallelization. Overall, all models except for the Shallow-TCN were reported
to have acceptable subjective quality, judged through informal listening tests,
even though their objective time domain metrics vary. This highlights the di-
vergence between the objective metrics and perceptual quality. The STFT loss
produces values closer to perception , showing that taking into account spectral
features can improve the perceptual accuracy. All the audio results are available
at https://www.math.u-bordeaux.fr/~plegra100p/NNA_AMPLI_EMU.php.

The architectures presented here overall are capable of accurately modeling
analog distortion effects. However, some aspects warrant further study. These
architectures are often capable of RT processing, some of which are light-weight
enough to work in RT on CPU. However, they remain computationally heavy
and have not been demonstrated to be able to achieve RT speeds for sampling
rates over 44.1 kHz. Indeed, some models either require parallelization of their
operations on GPU, low sampling rates or large buffer sizes in order to achieve
close to RT performance. Furthermore, the architectures currently present in
the state-of-the-art that are capable of RT use have only be demonstrated to
work with sampling rates of 44.1 kHz which is the lower bound for high quality
audio in music applications. Moreover, digital implementations of analog audio
effects usually introduce aliasing into the signal and to remedy this, anti-aliasing
techniques are used which often require upsampling of the signals by a factor of
8 [35]. In [4], Damskägg et al. study the effect of aliasing in the prediction of
their WaveNet and claimed that aliasing was indeed present in the output even
though the models were trained on non-aliased data but that this aliasing could
not clearly be heard in the predictions. Therefore anti-aliasing techniques might
be required for neural models and further work on the possible impact of aliasing
should be explored. A variety of methods presented here allow for input parame-
ters to be taken into account in the network for a parametric model via an extra
input dimension. However these methods could slow down training significantly
and greatly increase the amount of data needed. Moreover, all mentions of these
parametric approaches in the literature have been hypothetical or implemented
with marginal success and no clear demonstration of the methods have been
presented that we know of. The cost functions used for training and evaluation
of the networks have been studied in recent years. Wright et al. [34] present a
study on various functions for pre-emphasis filtering and weighting of the signal
in order to better capture the perceptual features. It was shown that the loss
that best improved audio results was the ESR with low-pass and A-weighting
pre-emphasis. A more formal comparison of various cost functions for amplifier
modeling would be desirable.

5 Conclusion

In this work, we present an overview of the current state-of-the-art of neural
network-based VA modeling, covering the recent advances in deep learning in
this field under black-box, gray-box and white-box approaches. We highlight the
results of each method, including the audio quality and RT capabilities. More-
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over, we include the evaluation methods used and the limitations of each method.
This was done in order to identify possible avenues for further work. We showed
that RT capabilities, and possible aliasing of such approaches as well percep-
tually relevant and preferably differentiable objective metrics warrant further
investigation. Further exploration into parametric models to enable adjustment
of the amplifier settings is also desirable.
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Abstract. Genetic Algorithm (GA) crossover for permutation type prob-
lems is difficult due to the avoidance of vertex or value repetition. As a
result extensive research into crossover operators has been undertaken
with many variants developed. However, these crossover operators oper-
ate in a blind manner relying on the mechanics of survival of the fittest.
A possible improvement is to introduce a quality measure into crossover
enabling high quality edges to be utilised. This paper presents a crossover
operator ER-Q that selects parental edges based upon their quality and
applies this to an electric bus scheduling problem. Results demonstrate
significant improvements in electric bus scheduling over alternative blind
crossover operators. This paper also explores the definition of quality in
terms of the electric bus scheduling problem noting that quality is dif-
ficult to quantify. A range of quality metrics are presented that can be
used with differing effectiveness to optimally schedule electric buses.

Keywords: Genetic Algorithms, Electric Bus Scheduling, Crossover

1 Introduction

Meta-heuristic methods such as a Genetic Algorithm (GA) [14] are popular for
application to permutation routing problems such as the Traveling Salesman
Problem (TSP), Vehicle Routing Problem (VRP) or a bus scheduling problem.
Permutation problems are NP-hard in nature and complex as each vertex must
occur once only. GAs use the principles of Darwinian evolution, survival of the
fittest, mutation and crossover to improve a population of solutions. Crossover,
whereby genetic material is swapped between parent solutions, is problematic
when avoiding vertex repetition. Consequently, many differing crossover opera-
tors have been developed to address this issue. Some preserve parental paths [9,
12, 20], some parental edges [28] and some use a graph-based approach [19, 27].
However, these crossover operators have one common factor in that they rely on
the mechanics of evolution to progressively improve solutions. They assume that
parent solutions are highly fit and thus all edges must be too. Furthermore, to
resolve vertex conflicts, new edges are introduced which will have an unknown
effect on solution quality. In effect, these crossover operators operate in a blind
manner relying on survival of the fittest to remove poorly recombined solutions.
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This paper presents a methodology for less blind crossover whereby the oper-
ator is augmented with a quality measure to analyse edges. This enables better
quality edges to be selected and more importantly, the avoidance of violating
problem constraints. To test this hypothesis the proposed quality-based ER-Q
crossover will be compared to a range of blind crossover operators using a com-
plex electric bus scheduling problem which has the constraints of a timetable and
bus range. Furthermore, this paper will consider the definition of quality itself
which can be difficult to quantify. A wide range of quality metrics could be used
and given the locality of its use, an edge by edge basis, choice of metric is shown
to be important in terms of overall results. The paper is laid out as follows:
Section 2 will provide an overview of crossover, its drawbacks and prior work
that considers edge quality; Section 3 will introduce a quality based crossover
technique and its application to an electric bus routing problem. In Section 4,
the results of a range of crossover operators including the proposed quality-based
operator when applied to a real-world electric bus scheduling problem will be
presented. Definitions of quality for electric bus scheduling will be explored and
tested in Section 5 and finally Section 6 will sum up and draw conclusions.

2 Background and Related Work

Permutation type routing problems have solutions which contain non-repeated
values. Examples include the Traveling Salesman Problem (TSP) with the aim
to visit each city once only in the shortest distance or the Multi Depot Vehicle
Routing Problem (MDVRP) [8] with the aim to assign customers and routes to a
fleet of vehicles minimising distance. The Capacitated Vehicle Routing Problem
(CVRP) extends the MDVRP adding a vehicle capacity such as a weight limit.
The bus scheduling problem can be considered similar to the MDVRP with time
windows (MDVPTW) whereby the goal is to assign a set of timetabled routes to
buses such that the bus fleet traversal distance is minimised whilst performing
each route on time. The electric bus scheduling problem adds a further con-
straint in that each bus has a limited range due to its battery which cannot be
quickly recharged. Therefore, an electric bus must be able to perform its assigned
timetabled routes and return to the depot without running out of charge.

Meta-heuristic approaches are commonly used to solve permutation type
problems such as bus scheduling. A popular meta-heuristic, the Genetic Al-
gorithm (GA) [14], uses the principles of Darwinian evolution to derive solutions
maintaining a population of solutions generated using natural selection, crossover
and mutation. Parents are probabilistically selected based on their solution qual-
ity and their genetic encoding used to generate offspring. This is achieved using
crossover whereby genetic material between parents is swapped to create two
new solutions. Given the success of GAs they have been applied to bus schedul-
ing problems. For instance, Kidwai et. al [17] use a GA to minimise the fleet
size of buses for a set of timetabled routes in Burdwan, India . For electric bus
routing Janovec and Kohani [16] used a grouping GA, whereby bus route as-
signments are termed groups, to minimise the energy use of a bus fleet. Wang
et. al [25] consider a multi-depot three line electric bus routing problem from
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Qingdao China using a column generation GA whereby columns representing
allocated routes for electric buses are recombined. Hu et. al [15] optimally route
electric buses with additional fast bus stop charging using a Mixed Integer Linear
Programming (MILP) model and a GA for a three bus route in Sydney.

However, crossover of genetic material between parents can be problematic
for permutation problems such as bus scheduling. Vertices must occur once only
but if a vertex occurs at differing points in parent chromosomes it could occur
twice in a child. Hence, specialised GA crossover operators have developed for
solving permutation problems early attempts preserving parent sub-paths. Order
(OX) [9] takes a parent subsequence and preserves the relative order of vertices
from the second copied to the child in order from the second crossover point skip-
ping conflicts. Partially Mapped (PMX) [12] transfers vertices between crossover
points directly to children. Each child takes vertices from the other parent out-
side these points resolving conflicts using a one to one mapping of crossed over
genetic material. Cyclic (CX) [20] ensures that each vertex and relative position
comes from a parent using a one to one mapping. The vertex from position one
in parent one is directly copied to the child. The next is the corresponding vertex
in parent two but in the position it is found in parent one. This continues until
a conflict when genetic material from the second parent can be directly copied.

More recent research on crossover considers edges between vertices more im-
portant. Grefenstette [13] introduced a method whereby from a given vertex
only incident edges from either parent could be selected probabilistically based
on length. If none are available a random edge is selected. Edge Recombination
(ER) [28] extended the concept by constructing an edge list from two parents
with each vertex having between two and four edges. A solution is constructed
by taking an initial vertex and selecting edges from the edge list which have least
onward edges. If no parent edges are available a random edge is used.

The aforementioned operators assume parental paths or edges are better
quality due to natural selection. However, parents will likely have some lower
quality edges thus these operators used in a purely evolutionary way fail to
reach optimality. To improve solutions local search methods are often used. For
example 2-opt [7] which iteratively takes all solution edge pairs and swaps them,
a sub-tour reversal accepting if an improvement. Given local search success and
importance of edge retention used by ER, a new more successful direction of
crossover developed with Edge Assembly (EAX) [19]. This operator takes two
parents A and B and constructs a graph G that contains the edges of parents.
From G a set of AB-cycles are constructed, an even-length sub-cycle of G with
edges alternating from A and B whereby cities can repeat but not edges. A
subset of AB-cycles are selected as an E-set. Once these have been determined
an intermediate solution is created from this E-set by using a greedy local search.

Edge preservation with local search has become the dominant crossover ap-
plied to the TSP. Partition crossover (PX) [26] uses the theory that if parent so-
lutions are locally optimal, offspring from their preserved edges are likely locally
optimal too tunnelling to new optima. PX creates a graph G of parental edges
finding a partition that separates graph edges aside from two edges. Offspring
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are generated using one parental sub-tour from one partition and a sub-tour
from the other partition and parent. PX cannot introduce new edges so requires
additional methods but achieved good results. PX was extended by Generalised
Partition crossover (GPX) [27] which utilises all partitions with only two con-
necting edges to construct offspring. Combined with Lin-Kernighan local search
performance was similar to Chained Lin-Kernighan [2]. GPX was improved with
further partition recombining methods (GPX2) [24].

However, a common factor of these crossover operators is that they operate
blindly without problem domain knowledge or edge quality awareness. It could
be argued that relying on the dynamic of pure Darwinian evolution by using a
blind crossover is not particularly beneficial. Indeed, Osaba et al. [21] describe
the CX crossover as blind and through analysis of a TSP problem postulate
that CX provides little benefit, mutation and natural selection are the major
contributing factors. The heuristic of Grefenstette [13] considered parent edge
quality using distance but reported edge failures of 40%. However, edge quality
can be implicitly defined, Tang and Leung [22] considered using nearest neigh-
bours to select edges in cases of failure of parent edge availability. Edges between
nearest neighbours are naturally of higher quality. Alternatively, Ting [23] mod-
ifies ER crossover such that edges from alternating parents are used with edge
failures resolved by greedily selecting the shortest available edge. Freisleben and
Merz [11] use a greedy approach to solve TSPs whereby non-common parental
edges are deleted in offspring and reconnections made using the shortest available
edge. Kkesy and Domański [18] considered an alternative edge quality measure,
the sensitivity of an edge in a parent to being broken and essentially replaced by
two edges with an intermediate vertex. Parental edges of higher sensitivity are
more likely to be preserved. Ahmed [1] modified ER crossover to consider edge
quality by greedily using the parental edge from a vertex with the best quality.
Results from application to small TSP instances yielded improvements over ER.

An alternative meta-heuristic Ant Colony Optimisation (ACO) [10] inte-
grates problem domain knowledge to solve routing problems. ACO uses heuris-
tic information, or edge quality, alongside pheromone information to guide ants
constructing solutions by traversing graph G. For the TSP this quality is the dis-
tance between vertices. This concept of heuristic information can be successfully
incorporated into GA crossover via ACO. Branke et al. [3] integrated ACO into
a crossover operator (ABX). A temporary pheromone matrix is created from a
number of parents and combined with heuristic information to generate a set of
offspring solutions. An alternative approach combined PMX crossover with ACO
(ACOX) whereby ants resolve conflicts rather than using a one to one mapping
hence incorporating edge quality improving upon PMX considerably [4].

3 Embedding a Quality Measure Within Crossover

To apply a meta-heuristic GA to the electric bus scheduling problem a chro-
mosome will represent a solution with a set of buses each followed by a set of
timetabled routes to be completed in order. However, as discussed in Section 2,
blind crossover methods such as OX, ER and PMX, with no knowledge of the
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bus scheduling problem and its constraints could be deemed to be less effective.
A methodology is required that favours preservation of parental edges but se-
lects edges using quality and non-violation of constraints. Consequently, a novel
crossover operator based upon ER but incorporating an edge quality measure,
ER-Q [6], is proposed for application to the electric bus scheduling problem. ER
crossover aims to preserve parental edges building solutions step by step using
any available parental edges. From a given vertex ER selects the parental edge
with fewest onward connections to avoid edge failures when no parental edges
are available. In this instance a random choice is made over all available edges.

p1 = (1 2 3 4 5 6 7 8 9 0)
p2 = (7 4 1 6 0 5 2 8 3 9)

Given two parents p1 and p2 an initial vertex 1 is selected. The next vertex
is taken from the connecting edges 0, 2, 4, or 6. All four have three available
parental edges so 4 is randomly selected. From vertex 4 edges to vertices 3, 5 and
7 are available, all have three available parental edges so 7 is randomly selected.
From vertex 7 only two parent edges are available to vertices 6 and 8 with 6
having fewest parental edges so is automatically selected giving the following:

o = (1 4 7 6 x x x x x x)

This continues until a solution comprised mainly of parental edges is derived. The
ER crossover operator is described in Algorithm 1. Edge failures of 1-1.5% are
reported by the authors, a weakness with random edge choices made introducing
possibly poor edges which violate problem constraints. Even selecting a random
parental edge could violate problem constraints or be a poor quality edge.

Algorithm 1 Edge Recombination Crossover
1: E = list of parent edges from each vertex, K = empty list, N = random vertex
2: while length of K is less than length of parent do
3: append N to K, remove N from parent edge list E
4: if parental edge list E at N not empty then
5: N = vertex from E with fewest connections (random choice if multiple)
6: else
7: N = random available vertex (an edge failure)
8: end if
9: end while

ER-Q can resolve the problem of violating problem constraints or inserting
a poor quality edge by embedding a constraint and edge quality aware measure.
Since ER builds a complete solution step by step constraints such as an electric
bus charge level and current time can be tracked for each bus such that edges to
routes that result in running out of charge or lateness can be considered taboo. Of
the remaining edges, a high quality edge can be selected, a less random approach.
The highest quality edge may not be the optimal so a probabilistic model over
edges is used, similar to ACO when ants probabilistically decide vertices to visit
using the random proportional rule, the probability of ant k at vertex i visiting
vertex j ∈ Nk is defined as:

pkij =
[τij ]

α[ηij ]
β

∑
l∈Nk [τil]α[ηil]β

(1)
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where [τil] is pheromone on vertex i to vertex l edge; [ηil] is heuristic information,
1/dil; α, β are tuning parameters; Nk is the feasible neighbourhood of ant k.

When an edge failure occurs at vertex i, heuristic information can be similarly
used for edge probability selection. A simple quality measure for the electric bus
scheduling problem and minimising fleet distance would be to use the distance
from the end of one bus route to the start of the next, vertex i to vertex j,
dij . If assigning a bus a route represented by vertex j violates the energy use
or lateness constraints, the edge has zero probability of selection. Thus, with
ER-Q, the probability of taking the edge to vertex j ∈ N can be defined as:

pij =
[ηij ]

β [Tij ]∑
l∈N [ηil]β [Til]

(2)

where [ηil] is heuristic information, 1/dil; β tunes edge length importance; N is
the feasible neighbourhood; Til indicates if the edge from vertex i to l is taboo:

Til =





0 if current time plus time to travel to vertex l causes lateness
or energy required to travel to vertex l and back to the depot
exceeds remaining battery charge

1 otherwise

(3)

This hypothesis of selecting edges based on quality can be further extended
to parental edge selection. Now edge quality is accounted for in cases of edge
failure and thus less problematic, it can be hypothesised that the ER policy
of selecting parent edges with fewest onward edges is unnecessary. If parental
edges are available then a probabilistic decision of which to take can also be
made based purely upon their edge quality. In effect, the parent solutions act
as a candidate set of edges. The quality aware ER crossover operator, ER-Q, is

Algorithm 2 ER-Q Crossover
1: E = list of parent edges from each vertex, K = empty list, N = random vertex
2: while length of K is less than length of parent do
3: append N to K, remove N from parent edge list E
4: if parental edge list E at N not empty then
5: create probabilistic model over edges from E using quality measure
6: N = select vertex using random proportional rule (Equation 2))
7: else
8: create probabilistic model over all available edges using quality measure
9: N = select vertex using random proportional rule (Equation 2))
10: end if
11: end while

described in Algorithm 2. Note the key differences to the standard ER crossover
operator in Algorithm 1. Now, for edge failures a probabilistic model using edge
quality is used to select an available edge detailed on lines 8-9 and to select a
parental edge a probabilistic model using edge quality is constructed over just
the parental edges, lines 5-6.

Further enhancements can be applied to ER-Q, minimising the degree of
modification of parent solutions and forcing edge failures [6]. Given the nature
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of using a probabilistic model, making many decisions can inevitably lead to oc-
casional errors in these decisions. To avoid this, each parent contributes directly
to an offspring whereby a random set of bus routings are directly preserved.
This is similar to standard crossover whereby the genetic material outside two
points of a parent solution is preserved. The remaining bus routings are con-
structed as described in Algorithm 2. The second enhancement is to in effect
cause an edge failure with a given low probability even if parental edges are
available. Now problem constraints and edge quality are accounted for using the
probabilistic model, edge failures can be considered less problematic. Indeed,
consideration of non-parental edges can now introduce new high quality edges
into the population.

4 Optimally Routing an Electric Bus Fleet

To test the theory that the less blind crossover operator ER-Q can improve
evolution it will be applied to an electric bus scheduling problem. A UK bus
operator runs buses throughout a large area consisting of a radius of 50Km.
These run on a range of routes whereby a number of buses operate to a given
timetable. The bus operator uses a fleet of electric buses which are equipped
with a 450kWh battery providing a range of 185Km using 2.42kWh of energy
per Km. The objective is to assign timetabled routes to electric buses such that
the distance the fleet travels is minimised with no tardiness or violating the
range constraints of the buses. A solution to the electric bus scheduling problem
will consist of a set of unique values representing buses each followed by a set
of unique values representing its assigned routes. An electric bus performs their
assigned routes in the given order. A set of routing scenarios have been created
from the UK bus operator routes varying in size and are described in Table 1.

Table 1. Real-world electric bus routing problems

Problem Lines Routes Buses Distance (Km) Problem Lines Routes Buses Distance (Km)

Scenario A 20 253 150 3112.58 Scenario F 24 670 150 7244.83
Scenario B 20 223 150 2353.76 Scenario G 60 1456 450 21050.11
Scenario C 20 890 150 13555.99 Scenario H 64 1774 450 29836.56
Scenario D 20 518 150 12145.38 Scenario I 124 3230 900 50886.67
Scenario E 20 676 150 12474.52

To test the effectiveness of the quality-based crossover ER-Q comparisons will
be made with OX, CX, PMX, ER and PX crossover operators. Three simple
mutation operators, swap, insert and inversion will be used. Note that to be
able to fully assess the effectiveness of each crossover operator no local search
methods will be used. Experiments were conducted over 25 random runs using
a Ryzen 2700 processor and a parallel method to maximise CPU occupancy [5].
The parameters used for the GA implementation are described in Table 2. A
recommended low degree of permissible maximum bus route modification of 10
bus routes is used and a one in ten probability of forcing edge failures [6].

The results from applying a GA with each crossover operator including ER-
Q to the bus scheduling scenarios are shown in Table 3. From these results it
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Table 2. Genetic Algorithm parameters

Population Size - 128 Iterations - 100k
Crossover Probability - 90% Mutation Probability - 10%

Elitism Rate - 2% Tournament Size - 9
Forced Edge Failure - 10% Max. Modifiable Bus Routings - 10

can be observed that the quality based crossover operator ER-Q outperforms
all other crossover operators in terms of minimising bus fleet distance for all
routing scenarios. Of the alternative crossover operators OX achieves the next
best results although ER-Q improves upon these non-service distances by as
much as 25%. The reduction in electric bus fleet non-service distance by ER-
Q is due to the number of buses used in each fleet. ER-Q finds solutions with
significantly fewer buses in the optimised solutions. Optimal solutions for routing
problems generally minimise vehicle use. A key reason behind ER-Q using fewer
electric buses is that through using a quality metric to assess edges, parental or
otherwise, returning early to the depot will only occur when close as the edge
is of higher quality. Otherwise, further routes are most likely scheduled. The
alternative crossover operators all recombine parent solutions introducing new
edges without any quality measure meaning that a bus could be inadvertently
returned to the depot through the recombination process. Survival of the fittest
can be relied upon to some extent to remove these weaker solutions but clearly
the dynamics of Darwinian evolution are not enough.

However, the effectiveness of a quality metric within a crossover operator
does come with a computational cost due to quality analysis of available edges.
The runtimes using each crossover operator are shown in Table 3 whereby it can
be observed that ER-Q is the most computationally expensive. For the smaller
problem scenarios ER-Q is approximately 2.5x slower than the fastest operator
CX although this difference diminishes as the problem size increases. But given
the improvement in results this additional computational cost is acceptable as
ER-Q is capable of deriving better results within the same time period.

It could be considered that the maximum permissible number of random bus
routings that can be modified from parent solutions of ten buses out of up to
900 is too low. The other bus routes are preserved from parent solutions, each
parent being responsible for one offspring. For the modifiable bus routings edges
from both parents can be utilised as normal with ER-Q crossover. Therefore,
the results from using ER-Q crossover are repeated using a range of maximum
permissible bus routes that can be modified with the results shown in Figure
1 in terms of average fleet traversal distance and runtimes. From these results
it can be observed that increasing the modification level degrades the derived
solutions. Moreover, even using a very small degree of modification is relatively
successful. The reason for this is that as the degree of probabilistic decision
making increases, the number of potential edges increases, many of which are
of lower quality but could still be selected. Therefore, it can be hypothesised
that ER-Q is a fairly destructive crossover operator and should only make small
modifications. Furthermore, using a small degree of modification enables ER-Q
to operate faster with little degradation in results.
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Table 3. Average electric bus fleet not in service distance travelled, buses utilised and
evolution runtimes using ER-Q crossover and a range of other crossover operators.

Routing Crossover Non-Service Distance Buses Runtime
Problem Operator Travelled (Km) Utilised (secs)

Scenario A

OX 1529.66±43.39 37.12±1.27 18.07±0.26
CX 2446.20±83.10 58.36±2.40 17.63±0.20
PMX 2587.54±85.18 61.08±2.34 22.91±0.48
ER 2060.09±78.90 49.32±1.91 33.87±0.56
PX 2351.22±105.12 56.36±2.27 27.24±1.00

ER-Q 1401.10±50.89† 33.40±1.15 32.35±0.37

Scenario B

OX 1357.17±45.05 32.64±1.19 16.74±0.13
CX 2140.56±99.51 52.28±1.93 16.51±0.26
PMX 2183.24±73.65 52.88±2.07 21.51±0.43
ER 1987.70±81.52 48.44±2.58 32.17±0.57
PX 2025.39±79.23 50.40±2.24 25.57±0.71

ER-Q 1244.79±52.53† 29.72±1.28 29.97±0.26

Scenario C

OX 5022.58±135.23 146.00±1.66 41.44±0.38
CX 5316.14±109.33 148.16±1.18 41.27±0.27
PMX 5257.85±114.20 148.00±1.15 41.93±0.33
ER 6566.84±386.25 149.28±0.79 73.62±0.50
PX 5308.84±114.45 147.16±1.91 57.11±1.25

ER-Q 4106.50±84.93† 126.80±2.10 74.15±0.44

Scenario D

OX 2462.81±81.06 111.16±2.66 27.40±0.19
CX 2571.52±101.85 131.08±2.20 27.55±0.20
PMX 2555.53±90.05 132.40±3.72 27.92±0.45
ER 2693.05±103.65 125.92±2.97 50.83±0.47
PX 2543.01±101.07 130.88±3.10 41.95±2.70

ER-Q 1976.44±78.27† 94.04±1.84 50.14±0.37

Scenario E

OX 3009.79±83.22 127.04±2.44 33.18±0.17
CX 3225.10±91.25 135.36±2.31 33.28±0.17
PMX 3238.47±89.10 136.72±2.11 33.40±0.21
ER 3528.27±106.10 141.04±3.21 61.10±0.57
PX 3190.02±72.31 135.52±2.37 48.69±2.11

ER-Q 2595.11±41.23† 109.44±1.50 59.72±0.42

Scenario F

OX 1174.93±51.29 114.12±2.77 32.58±0.19
CX 1319.85±53.19 130.40±3.62 33.04±0.20
PMX 1338.45±54.81 132.20±2.83 33.69±0.87
ER 1436.26±80.14 125.92±2.72 60.04±0.53
PX 1319.18±67.48 129.64±2.89 48.98±2.40

ER-Q 903.44±27.04† 87.36±2.27 59.27±0.31

Scenario G

OX 9856.68±127.40 264.28±3.86 92.62±0.29
CX 11 966.71±162.85 322.44±4.54 93.76±0.87
PMX 11 894.88±209.58 328.80±5.48 94.80±0.90
ER 13 124.85±240.66 327.88±6.27 149.77±0.63
PX 11 897.18±126.69 321.20±5.09 127.47±3.01

ER-Q 7659.55±148.69† 214.84±3.33 135.82±0.45

Scenario H

OX 7156.48±122.06 344.48±4.85 115.84±0.24
CX 7802.91±126.00 389.32±6.11 118.54±2.28
PMX 7637.57±132.83 394.08±4.18 117.92±1.23
ER 9251.01±396.63 400.40±5.10 182.41±2.67
PX 7742.30±151.88 388.20±5.25 150.81±2.81

ER-Q 5633.01±133.17† 296.12±3.43 163.59±0.44

Scenario I

OX 19 854.31±184.29 649.20±9.11 243.56±0.63
CX 23 121.74±248.86 752.44±8.69 247.88±3.55
PMX 22 304.42±275.84 750.00±7.34 254.23±1.84
ER 26 268.26±464.78 772.48±8.39 358.53±0.72
PX 23 044.95±253.68 750.20±7.31 306.16±2.19

ER-Q 14432.14±197.34† 536.32±4.12 326.07±1.22
†Statistically significant improvement over all other crossover operators with p < 0.01,
a two-sided significance level and 24 degrees of freedom
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Fig. 1. Average non-service distance travelled and runtimes using ER-Q crossover and
a range of permissible bus route modification levels.

5 Defining the Ideal Quality Metric

In the previous experiments, a quality measure was utilised within ER-Q crossover
to create a probabilistic model over the available edges to select higher quality
edges. Since the goal is to complete all timetabled routes on time in minimal
distance, a simple edge length quality metric was deemed sufficient. However,
distance is not the only quality measure that could be utilised. Indeed, an issue
with using distance between vertices is that it can encourage a bus to return
earlier than necessary to the depot. If a bus completes a route finishing close to
the depot the distance quality measure of returning to the depot will be high.

Therefore, a question remains over quantifying quality. Since a quality mea-
sure will operate at a highly localised level, an edge by edge basis, the overall
fitness function cannot be utilised. To illustrate the importance of defining qual-
ity a range of metrics are proposed. The first considers energy consumption in
terms of kWh required by an electric bus to travel out of service to the start
of another timetabled bus route. This quality measure is essentially the same as
the distance metric. However, a key change is when considering an edge which
returns the bus to the depot whereby the edge quality is defined as the energy
that could be used to service more bus routes, the remaining charge in the bat-
tery. Clearly, if a bus returns to the depot it will no longer be used and any of its
remaining energy will be essentially “lost” in terms of servicing the timetable.
Thus heuristic information [ηil] in Eq. (2) for electric bus n can be defined as:

[ηil] =

{
1/eil if vertex l is a bus route
1/cn otherwise

(4)

where eil is the electric charge required to travel between vertices i and l; cn is
the remaining charge for bus n.

A second quality measure that can be defined for use by ER-Q for electric bus
scheduling is the use of time. In the previous experiments due to the detection of
constraints on edges a bus is not assigned a route it will arrive late to. However, a
bus could arrive early to the beginning of a bus route and then simply wait until
the departure time for the given route. This is a loss of service time when a bus
could be performing a route a further distance away. Moreover, with the previous
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experiments using a distance quality metric electric buses were also assigned to
closer bus routes even if too early as this would conserve their battery charge.
Consequently, the waiting time for a bus at the start of a potential bus route
is used as a differing quality measure. In terms of the return to the depot, the
quality measure is the loss of working time. Therefore, edges with a high degree
of waiting time or loss of working time are considered of poorer quality. The
time-based quality measure is defined as follows:

[ηil] =

{
1/(sl − Tn − til) if vertex l is a bus route
1/(F − Tn) otherwise

(5)

where sl is the start time of the route at vertex l; Tn is the current time for bus
n;til is the time to travel between vertices i and l; F is the day finish time.

The time-based quality metric can be extended further. It can be considered
that both distance and waiting time are important. Therefore the time metric
can be extended to include the travel time between routed along edges. In effect,
the total amount of time an electric bus is out of service:

[ηil] =

{
1/(sl − Tn) if vertex l is a bus route
1/(F − Tn) otherwise

(6)

Finally, two further quality metrics will be used. Firstly, previous results
demonstrated that reducing the number of buses used is advantageous. Conse-
quently, a simper quality measure will be used which only labels edges returning
to a depot as poor quality defined by the loss of service time. Finally, for compar-
ison purposes, no quality measure will be used within ER-Q, in effect a uniform
level of quality across edges. The ER-Q process will remain the same using only
a small degree of modification of parent bus route schedules. Visibility of the
constraints will remain such that any edges that would exceed an electric bus
charge level or edges that arrive late to a timetabled route are considered taboo.

The previous experiments are repeated using each individual quality measure
with results shown in Figure 2 in terms of the average not in service distance
travelled by the electric bus fleet and the number of buses utilised. A key ob-
servation is that all quality measures are not equal, choice of quality measure
can significantly influence results. The time-based quality measures perform the
best in terms of minimised fleet distance. The number of electric buses used by
the time-based quality measures embedded in ER-Q are also lower than any of
the other measures. Clearly, any degree of time that a bus is waiting at a bus
stop to begin a timetabled route is wasted time that could be put to use. Using
a purely distance-based quality measure results in considerable wasted time and
hence a greater number of buses are required. This means more trips in and out
of the depot increasing the not in service distance travelled by the fleet.

An energy-based quality measure is a slight improvement over a pure distance-
based measure. This is due to it being easier to penalise edges that return buses
to the depot with charge remaining as observed with a small reduction in buses
used. Interestingly, a quality measure that is purely designed to label edges that
return a bus to the depot as lower in quality increases bus usage. This is likely
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Fig. 2. Average non-service distance travelled and buses utilised for optimised solutions
using ER-Q crossover and a range of differing quality measures.

due to no time-based quality being used resulting in buses not returning to the
depot and assigned a route late in the day wasting much service time. Once the
end of the day is reached the constraints dictate that a bus returns to the depot.

Finally, the results in Figure 2 demonstrate that when using no quality mea-
sure, merely problem constraint awareness, the total non-service distance trav-
elled by the fleet is significantly greater than when using distance, energy or
time-based quality measures. This reinforces the hypothesis that embedding a
measure of edge quality within crossover can improve overall results for permu-
tation routing problems. Moreover, contrasting results in Figure 2 without using
a quality measure to those in Table 3 for the blind crossover operators results are
still significantly improved. Therefore, even a problem constraint aware crossover
operator which is relatively blind is beneficial for permutation routing problems.

6 Discussion and Conclusions

This paper has hypothesised that crossover operators for permutation problems
operate effectively blindly relying on the simple mechanics of Darwinian evolu-
tion to improve solutions. These crossover operators have no problem domain
knowledge, only that one given solution is better than another. This paper pos-
tulated that introducing a degree of problem domain oversight into crossover via
the use of an edge quality measure to select parental edges could reduce blindness
and improve results. In effect, favoring the better aspects of the parents. Hence,
a crossover operator, ER-Q, based on Edge Recombination (ER) that probabilis-
tically selects edges based on their perceived quality is used to test this theory.
Higher quality edges stand a greater chance of selection. Tested upon a multi-
facetted permutation routing problem, the assignment of timetabled bus routes
to a fleet of electric buses, the use of a quality-based crossover substantially
improved results. Knowledge of the problem domain through a quality mea-
sure enables a crossover operator to have oversight of both problem constraints
avoiding invalidating solutions and favouring edges beneficial to the problem.

However, whilst the concept of a quality measure embedded within a crossover
operator is a simple concept, defining quality itself is more difficult. If minimis-
ing distance travelled by an electric bus fleet a sensible quality measure to use
at a localised level would seem to be edge length or distance to the start of the
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next potential route. However, experiments showed that buses were directed to
routes considerably earlier than expected. Analysis of the problem and results
led to a time-based quality measure that resolved this issue improving results.

Therefore, it can be concluded that whilst a quality measure can assist
crossover to select high quality edges, defining the measure is not straightforward
and will necessitate analysis of the problem and experimentation. Moreover, a
quality measure will most likely be unique to the problem under consideration.
This is the advantage of blind crossover operators in that they are universally
deployable by relying on the dynamics of Darwinian evolution although less ef-
fective. Future work will continue to quantify edge quality and extending to the
detection of low quality edges in parents to earmark them for modification.
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Abstract. This paper addresses the electric vehicle charging problem in
a charging station with a limited overall power capacity and number of
chargers. Electric vehicle drivers submit their charging demands. Given
the limited resources, these charging demands are either accepted or
rejected, and an accepted demand must be satisfied. The objective of
the scheduler is to maximize the number of satisfied demands. We prove
that the problem is NP-hard. Then, we propose a linear programming
model, heuristic, and a metaheuristic combining a simulated annealing
algorithm with an iterated local search procedure to solve it. We provide
computational results to show the efficiency of the proposed methods.

Keywords: Electric Vehicle · Charging Scheduling · Linear Program-
ming · Heuristic · Simulated Annealing

1 Introduction

Electric vehicles have recently gained wide popularity as low-emission vehicles.
According to the International Energy Agency [6], the number of electric vehicles
has reached 10 million in 2020. While in 2010, only hundreds of them were on the
road. However, the global adoption of electric vehicles is still challenging since
charging an electric vehicle is time-consuming and requires considerable electric
energy. Moreover, a mass transition to electric vehicles will lead to saturation of
charging stations and a significant increase in electrical power demand that can
overload the power grid. Several studies propose smart charging approaches to
avoid these negative impacts without expensively upgrading the existing power
grid. In smart charging, a management system controls the charging of electric
vehicles and optimally schedules the electric vehicle charging load. This paper
addresses the electric vehicle charging scheduling problem (EVCSP) in a charg-
ing station where drivers submit charging demand reservations before arriving.
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2 I. Zaidi et al.

Given the lack of charging stations, the short range of electric vehicles, and the
long time required to charge them, drivers of electric vehicles need to carefully
plan their trips to ensure that they will have opportunities to recharge their
batteries. As a result, it is preferable for them to confirm in advance that the
charger they intend to use is available. Moreover, the Open Charge Point Pro-
tocol includes the reservation functionality of charging stations [1].

The remainder of this paper is organized as follows. Section 2 briefly reviews
the main works on EVCSP. Section 3 describes in detail the investigated prob-
lem. Section 4 provides the complexity of the problem. Section 5 formulates it
as an integer linear programming (ILP) model. The proposed heuristic is pre-
sented in Section 6. Section 7 details the developed metaheuristic that combines
a simulated annealing algorithm with a iterated local search procedure. Section 8
evaluates the performance of the proposed methods. The paper closes with some
conclusions and future research directions in Section 9.

2 Related Work

We focus on studies that investigated the problem of optimizing the charging
load of electric vehicles from the perspective of charging station operators. The
main objectives of these operators are to reduce the total charging cost [5, 14,
15] or to maximize the satisfaction of their customers. In smart charging sta-
tions, a control system builds a charging schedule while considering the arrival
and departure times and the amount of energy requested by each vehicle driver.
Many studies assume an uncertain arrival time [4, 15, 13]. Authors in [14] con-
sider that electric vehicles may arrive with or without a reservation. The electric
vehicle drivers can provide the departure times [4, 14, 16], or they can be esti-
mated based on historical behavior [15]. As for the desired energy, [14] assume
that the electric vehicle drivers directly specify their desired energy in kWh.
Other papers consider charging electric vehicles to the rated battery capacity
[10, 12, 16]. For constraints related to the charging station, authors in [10, 12,
16] consider a variable charging power where the charging rate varies over time,
while in [4], constant power rates were considered. One of the most commonly
used constraints is the capacity of the charging infrastructure. This constraint
defines the total power limit of the charging infrastructure, expressed in (kW).
Limiting the total charging load of electric vehicles is essential to keep the power
peaks low and avoid overloading other equipment and transmission lines. Dif-
ferent optimization approaches were adapted and developed to solve EVCSP. A
two-stage approximate dynamic programming was proposed in [16]. Some stud-
ies have considered stochastic optimization methods as in [13], where the authors
proposed a stochastic linear programming model to schedule the electric vehicles
charging load in real-time. Metaheuristics were also applied to solve the EVCSP.
For example, we can find a particle swarm optimization in [12, 14], a genetic algo-
rithm in [5], a GRASP-like algorithm and a memetic algorithm in [4]. Although
the studies mentioned above have examined various aspects of the EVCSP, the
charging station operating model, the constraints, and the optimization objec-
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tive are different from this study. Thus, comparing results between the proposed
methods and literature cannot be pertinent.

3 Problem Description

The formulation of an instance of the EVCSP can be defined as follows. We
have a set J = {1, . . . , n} of charging demands to be scheduled on a set of
M = {1, . . . ,m} of chargers. Each charger i delivers a constant power of wi

(kW). The total power that can be delivered by all chargers simultaneously
must not exceed wG (kW), which will further be denoted as the power grid
capacity. Each electric vehicle j has an arrival time rj , departure time dj , and
an energy requirement ej (kWh) that must be satisfied by its departure time dj .
The charging time pij of each demand j when assigned to charger i is equal to
pij =

ej
wi

. Charging demands can either be accepted or rejected. When a charging
demand is accepted, it must be satisfied. At each time, a charger can only charge
one vehicle, and a vehicle can only be charged by one charger. During the time
interval [rj , dj), the vehicle is parked and plugged into charger i. The charging
scheduling is preemptive, i.e., the charging operation of each vehicle j can be
interrupted at any time and resumed later in the interval [rj , dj). Even when
the vehicle completes charging before dj , it still occupies the charger i until it
departs. Unless otherwise mentioned, we divide the scheduling time horizon H
into T time slots of equal length τ . The scheduling objective is to maximize the
number of satisfied charging demands.

4 Complexity

Theorem 1. The problem of maximizing the number of satisfied charging de-
mands is NP-hard.

Proof. We show that the problem is NP-hard by proving that its special case
where all chargers are identical is NP-hard. Let m = ⌊wG

w ⌋, where w is the
charging power rate of each charger. Clearly, at each time, at most m chargers
can be activated at the same time. Furthermore, maximizing the number of
satisfied charging demands is equivalent to minimizing the number of rejected
demands. Minimizing the number of rejected charging demands is equivalent to
minimizing the number of late jobs in m identical parallel machines scheduling
problem with release date and preemption of jobs (Pm|prmt|∑U). In scheduling
problem Pm|prmpt|∑U if a job is late in an optimal schedule, it is immaterial
where it is scheduled. Thus, scheduling on-time jobs is important. In the optimal
schedule, the on-time jobs are scheduled in their interval [rj , dj ], and at most m
are used to schedule these jobs. Then the on-time jobs correspond to the set of
accepted demands in the problem of maximizing the number of satisfied charging
demands. In [3] authors showed that the problem Pm|prmpt|∑U is NP-Hard
even with two identical machines. Then the problem of maximizing the number
of satisfied demands is NP-Hard.
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5 Mathematical Formulations

In this section, we formulate the described problem as an integer linear program-
ming (ILP) model. We define binary variables sij to specify whether or not the
charging demand of electric vehicle j is scheduled on charger i. In addition, we
define binary variables xijt specifying whether or not the electric vehicle j is
plugged into the charger i at time slot t. Also, we introduce binary variables yjt
that specifies whether or not the electric vehicle j is charging at time slot t. The
mathematical formulation is as follows.

max
∑n

j=1

∑m
i=1 sij (1)

∑m
i=1 sij ≤ 1 ∀j ∈ J (2)∑n
j=1 xijt ≤ 1 ∀i ∈ M, t ∈ H (3)

∑dj

t=rj
xijt = sij(dj − rj) ∀i ∈ M, j ∈ J (4)

∑dj

t=rj
yjt =

∑m
i=1 pijsij ∀j ∈ J (5)

∑n
j=1

∑m
i=1 wi × sij × yjt ≤ wG ∀t ∈ H (6)

Constraints (2) ensure that when a demand j is accepted, it is assigned to one
charger. Constraints (3) ensure that each charger i charges one demand at each
time slot t. Constraints (4) ensure that if a charging demand j is accepted to be
scheduled on charger i, then it will be plugged into this charger from its arrival
rj to its departure dj . Constraints (5) ensure that if a charging demand j is
accepted, the vehicle j will be charged to its requested energy. Constraints (6)
ensure that at each time slot t, the total power delivered by all chargers does
not exceed wG. In addition, variables xijt and yjt are set to zero for all t where
t < rj and t ≥ dj .

Constraints (6) can be linearized by using a new binary variables zijt. a
variable zijt equals to 1 if variables yjt and sij equal to 1. Constraints (6) are
replaced by the following constraints:

zijt ≥ yjt + sij − 1 ∀i ∈ M, j ∈ J , t ∈ H (7)

zijt ≤ yjt ∀i ∈ M, j ∈ J , t ∈ H (8)

zijt ≤ sij ∀i ∈ M, j ∈ J , t ∈ H (9)
∑k

i=1

∑n
j=1 wizijt ≤ wG t ∈ H (10)

6 Greedy Constructive Heuristic

Since maximizing the number of satisfied demands is NP-Hard, it is hard to
find optimal solutions for large-size instances in a reasonable time. Moreover,
using a commercial linear programming solver may incur additional costs for
charging station operators. Hence, we propose heuristics and metaheuristics.
The proposed heuristic, detailed in Algorithm 1, builds a charging schedule by
considering vehicles in the non-decreasing order of their arrival time rj and
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breaking ties first by the non-decreasing order of their departure time dj , then
by the non-decreasing order of their energy request ej . Let (w

t
G)t∈H be a vector

of reals that stores the power allocated at each time slot t, which is initialized to
0. For each vehicle j, if at least a charger is available at rj , the heuristic begins
by seeking an available charger with the smallest charging power to charge j
without exceeding the current grid capacity (lines 7-10). If such a charger exists,
it is selected to charge vehicle j (line 11). Otherwise, the heuristic calculates
the value e(j′, rj , dj) that represents the amount of energy allocated to each
scheduled charging demand j′ (j′ ̸= j) in the interval [rj , dj). The charging
demand with the greatest value of e(j′, rj , dj) will be rejected if e(j′, rj , dj) is
greater than the requested energy ej (line 15). Otherwise, the vehicle j is rejected
(line 16). When no charger is available at rj (lines 18-22), the charging demand
with the maximum departure time is rejected.

Algorithm 1: Constructive greedy heuristic

Input : The set of charging demands J , the set of chargers M, the grid
capacity wG

Output: The assignment of vehicles to chargers, the set of rejected demand
1 Sort J by non-decreasing order of rj . Then, in non-decreasing order of dj .

Then, in non-decreasing order of ej ;
2 Sort M by non-decreasing order of charging power wi ;
3 (wt

G)← (0)t∈H ;
4 while J ≠ ∅ do
5 Let j be the first demand in J ;
6 if at least a charger is available at rj then
7 wa

j be the first available charger in M ;
8 Let b be the number of time slots in [rj , dj) where wt

G + wa
j ≤ wG;

9 Ej ← ej/(b× τ) ;
10 if the vehicle j can be scheduled on an available charger i with a

charging power wi ≥ wj without exceeding wG then
11 Schedule j on charger i and remove it from J ;
12 else
13 Let e(j′, rj , dj) be the allocated energy to charging demand j′ ̸= j

in the interval [rj , dj);
14 Let k be the scheduled demand with maxj′ e(j

′, rj , dj) ;
15 if e(k, rj , dj) > ej then Reject k ;
16 else Reject j and remove it from J ;

17 end

18 else
19 Let j′ be the scheduled charging demand with maximum dj′ ;
20 if dj′ > dj then Reject j′ ;
21 else Reject j and remove it from J ;

22 end
23 Update wt

G;

24 end
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7 Simulated Annealing Metaheuristic

7.1 Solution Representation

Solving the scheduling problem consists of two main decisions: first, selecting
electric vehicles to be plugged into chargers; then, selecting vehicles to charge by
choosing the appropriate time slots for charging without exceeding wG. There-
fore, a solution to the charging scheduling problem consists of the assignment
solution and the power allocation solution. We represent the assignment of charg-
ing demands to chargers as a vector (π1, .., πm) where πi is the sequence of ve-
hicles assigned to a charger i and we place the unassigned demands in a list
of rejected demands. The power allocation solution is represented with a vec-
tor (Tj)j∈J where Tj ⊆ H stores, for each vehicle j, the time slots chosen for
charging process. For convenience, we define the vector (wt

G)t∈H , which stores
the minimum grid capacity at each time slot t.

7.2 Simulated Annealing

The simulated annealing (SA) algorithm, initially proposed by [7], is a stochas-
tic local search metaheuristic successfully adapted to address several scheduling
problems. In this paper, a candidate solution for the SA algorithm represents the
assignment of charging demands to chargers, on which an iterated local search
(ILS), described in Section 7.4, is applied to get the power allocation vector and
the objective function value of each generated solution. The detailed procedure
of the implemented SA is presented in Algorithm 2. It starts by taking as in-
put an initial solution (S0), generated using the heuristic detailed in Section 6,
and five parameters: the maximum number of generated neighbors at each itera-
tion (maxGenerated), the acceptation ratio at each iteration (acceptanceRatio),
the final temperature (Tf ), the maximum global number of generated solutions
(maxTrials), and the parameter for initializing the value of the temperature
(µ). First, the initial solution S0 is set as the current solution S and as the
global best solution Sbest (line 1). The temperature parameter T is initially
set to a value proportional to the objective function value of the initial solu-
tion T = µf(S0). The maximum number of accepted solutions at each iteration
(maxAccepted) is initially set proportionally to the parameter (maxGenerated)
(line 2). At each iteration (lines 3-19), SA generates neighbors of the current
solution S until reaching either (maxGenerated) or (maxAccepted). We detail
the neighborhood generation in Section 7.3. For each new solution S′, the global
number of generated solutions (trial) and the number of generated neighbors of
S′ (generated) are incremented (lines 8-9). The objective function value of each
solution, i.e., the number of scheduled demands, is referred to by f(S), and it
is calculated by the ILS procedure given in Section 7.4. The gap between the
objective values of the new solution S′ and the current solution S is calculated
as ∆f = f(S′)− f(S). The neighbor S′ is accepted and replaces the current so-
lution based on the Metropolis criteria (lines 10-16); the new solution S′ replaces
the current solution if there is an improvement, i.e., ∆f > 0. If S′ improves the
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best solution found so far, it will become the new global best solution Sbest. Oth-
erwise, a random number is generated following the uniform distribution U [0, 1]
and the neighbor S′ will become the current solution if U(0, 1) ≤ e∆f/T where
T is the temperature parameter that controls the probability of accepting worse
solutions. For each accepted solution, the parameter accepted is incremented
(line 12). Finally, a cooling scheme gradually decreases the temperature at each
iteration (line 16). We consider the Lundy-Mees cooling scheme proposed by [9].
It updates the temperature T at each iteration l as Tl+1 = Tl

a+bTl
. Connolly in [2]

develops a variant of the Lundy-Mees scheme that set the parameter a to 1 and
b in function of the initial temperature T0, the final temperature Tf and the size

of the neighborhood M as b =
T0−Tf

MT0Tf
. Here, the number of iterations is not fixed

directly. In fact, if we omit the condition on maxAccepted, the number of itera-
tions will be equal to maxTrials

maxGenerated . Thus, we set M to this value (line 1). After
updating the temperature, the number of generated neighbors (generated) and
the number of accepted solutions (accepted) are reset to zero (line 4). The algo-
rithm will stop if the number of generated solutions (trial) reaches its maximum
(maxTrials), or after generating (maxGenerated) solutions that did not result
in accepted solutions, i.e. accepted = 0 (line 17). When the stopping criterion is
met, the algorithm terminates and returns the best solution Sbest found so far.

Algorithm 2: Simulated annealing

input : S0, maxGenerated, acceptanceRatio , Tf , maxTrials, µ
output: Best solution found Sbest

1 Sbest ← S0 , S ← S0 , T ← µf(S0), M ← maxTrials
maxGenerated

, trial← 0 ;
2 maxAccepted← acceptanceRatio×maxGenerated;
3 repeat
4 accepted← 0; generated← 0 ;
5 while generated ≤ maxGenerated and accepted ≤ maxAccepted do
6 S′ ← Neighbor(S);
7 ∆f ← f(S′)− f(S);
8 generated← generated + 1;
9 trial← trial + 1;

10 if ∆f > 0 or U(0, 1) ≤ e∆f/T then
11 S ← S′;
12 accepted← accepted + 1;
13 if f(S) > f(Sbest) then Sbest ← S ;

14 end

15 end

16 T ← T
1+bT

;

17 until trial ≤ maxTrials and accepted > 0;
18 return Sbest
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7.3 Neighborhood Operators

The SA algorithm randomly chooses one of three operators to generate a new
solution:

– Change assignment: this operator chooses a charging demand j on a
charger i1 and moves it to another charger i2. The chargers and the charging
demand are randomly selected. If a charging demand in charger i2 overlaps
with j, the move is discarded.

– Assign a rejected charging demand: this operator chooses a charging
demand j from the rejected list and inserts it on a charger i. The charger and
the charging demand in the rejected list are randomly selected. The move is
discarded if at least one charging demand in charger i overlaps with j.

– Reject a charging demand: this operator moves a charging demand from
a charger to the rejected list. The charger and the charging demand are
randomly selected.

When a move is discarded, the SA algorithm randomly selects another oper-
ator. After each successful move, the SA algorithm applies an ILS procedure to
construct and improve the power allocation solution.

7.4 Iterated Local Search

Given an assignment solution, the iterated local search (ILS) procedure will solve
the power allocation problem by selecting the maximum subset of scheduled
demands from the assignment solution that can be satisfied without exceeding
the grid capacity wG. The assignment solution may or not be feasible, i.e., the
grid capacity wG may not be sufficient. Let J ′ be the set of assigned charging
demands. Let w̃G be the minimum grid capacity required to satisfy all charging
demands in the set J ′. The basic idea is to obtain a charging schedule with the
minimum value of w̃G. When w̃G > wG, we insert and reject charging demands
until w̃G reaches wG. Note that we can only insert the demands rejected by the
ILS procedure. Moreover, each demand can only be reinserted in their previously
assigned charger, meaning that we cannot move a charging demand to another
charger. Therefore, we keep a list LLS of rejected demands by ILS along with
their previous chargers. The implemented ILS algorithm (Algorithm 3) starts
by building the power allocation vectors of an assignment solution S0 using a
heuristic described in Algorithm 4 (line 1). The current solution S is set to S0.
At each iteration (line 3-23), the ILS procedure generates maxGeneratedLS
neighbors of the current solution S (line 5-12). For each generated neighbor, it
applies a procedure to minimize w̃G (line 7) that will be described below. The
best feasible solution S′ in the neighborhood of S is selected. A solution is feasible
if its grid capacity w̃G is less than or equal to wG. If the best neighborhood S′ is
better than the best solution found so far S∗, it will replace the current solution
S and the best solution S∗. Otherwise, the number of non-improving iterations
iter is incremented (line 21). In this case, the current solution S is set to either
the best solution in the neighborhood S′ or to S∗. The best solution in the
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neighborhood S′ may replace the current solution S if a randomly generated
number u is less than the probability piter (line 17-22). piter decreases in a
geometric way [11] and is calculated as follows. piter = p0 × riter−1, Where p0
is the initial acceptance probability, r < 1 is the reducing factor, and iter is the
number of iterations. When the number of non-improving iterations iter exceeds
maxNonImproving, the search is considered as stagnating on a local optimum
and is subsequently terminated.

Algorithm 3: Iterated local search procedure

Input : The assignment solution S0, maxNonImproving,
maxGeneratedLS, r, p0

Output: Best feasible solution found S∗

1 Initialize the power allocation for S0 according to Algorithm 4;
2 iter ← 0; S ← S0; S∗ ← empty solution;
3 while iter < maxNonImproving do
4 S′ ← empty solution;
5 for k = 1 to maxGeneratedLS do
6 N ← Local Neighbor(S);
7 Apply minimizing grid capacity procedure to N ;
8 if w̃G(N) ≤ wG and f(N) > f(S′) then
9 if S∗ is empty then S∗ ← N ;

10 S′ ← N ;

11 end

12 end
13 if f(S′) > f(S∗) then
14 S ← S′;
15 S∗ ← S′;
16 iter ← 0;

17 else
18 Generate a random number u ∼ U(0, 1);

19 if u < p0 × riter−1 then S ← S′ ;
20 else S ← S∗ ;
21 iter ← iter + 1

22 end

23 end
24 return S∗

Initial solution for power allocation Let J ′ be the set of vehicles in the
assignment solution vector. Let wj be the charging power of each vehicle j ∈ J ′.
Then, the charging time pj of each demand j can be calculated as ⌈ej/wj⌉. The
proposed heuristic, detailed in Algorithm 4, builds the power allocation solution
for the set J ′ by considering the assigned vehicles in the non-decreasing order
of their departure time dj , and break ties first by non-increasing order of their
energy request ej , then by non-increasing order of their arrival time rj (line 1).
The grid capacity w̃G and power allocation vectors are initialized to 0 (line 2).
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The power allocation heuristic starts by charging vehicle j at time slots without
exceeding w̃G in chronological order (lines 4,6-15). Then, on time slots with the
minimum wt

G value (lines 5,6-15).

Algorithm 4: Power allocation heuristic

Input : The set of charging demands J ′, the selected charging power wj and
the charging time pj for each vehicle

Output: The vectors (Tj)j∈J , (wt
G)t∈H , the grid capacity w̃G

1 Sort J ′ by non-decreasing order of dj . Then, in non-increasing order of ej .
Then, in non-increasing order of rj ;

2 (wt
G)← (0)t∈H ; w̃G ← 0; (Tj)← (∅)j∈J ′ ;

3 for j ∈ J ′ do
4 H1 ← the set of time slots t where t ∈ [rj , dj) and w̃G ≥ wj + wt

G sorted in
chronological order;

5 H2 ← the set of time slots t where t ∈ [rj , dj) and t /∈ H1 sorted in non
decreasing order of wt

G;
6 while pj > 0 do
7 if H1 ̸= ∅ then Hi ← H1 ;
8 else Hi ← H2 ;
9 Let t be the first time slot of Hi ;

10 Remove t from Hi ;
11 Tj ← Tj ∪ {t} ;
12 wt

G ← wt
G + wj ;

13 pj ← pj − 1;
14 if wt

G > w̃G then w̃G ← wt
G ;

15 end

16 end
17 return w̃G, (Tj)j∈J , (wt

G)t∈H

Local neighbor structure In the ILS procedure, a neighbor is generated by
one of the following operators:

– Reject this operator removes one or multiple charging demands from a
charger to the rejected list LLS . We implements three methods to select a
vehicle to reject. First, a randomly chosen vehicle. Second, reject the ve-
hicle j with the greatest value vj where vj =

∑
t∈T ′ wt

G where T ′ = {t ∈
Tj and wt

G > wG}. Third, calculate the value vj for all scheduled vehicles
and then a roulette wheel selection [8] is performed i.e., a vehicle j with
a higher value vj has a higher probability to be chosen. After rejecting a
vehicle, the wt

G is updated.
– Reinsert this operator randomly chooses one or more vehicles from LLS to

be assigned back to its charger. The power allocation for inserted vehicle is
obtained using the same procedure in Algorithm 4 (lines 4-21).

Minimizing grid capacity procedure We use a SA algorithm similar to
Algorithm 2 but with different objective function f(S) and different neighbor
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structure. This second SA is denoted by minwG-SA. The objective of minwG-
SA is to try to reschedule the charging operations so that the minimum grid
capacity w̃G is minimized. Since Algorithm 2 is a maximization algorithm, in
the minwG-SA, we replace line 10 by ∆f < 0 or U(0, 1) ≤ e−∆f/T . Also,
line 13 is replaced by f(S) < f(Sbest). A neighbor structure in the minimizing
grid capacity local search method moves a charging operation of a vehicle j
from a time slot t1 ∈ Tj to another time slot t2 /∈ Tj . Let J ′ be the set of
scheduled charging demands where dj − rj − pij > 0, where pij is the charging
time of vehicle j on its assigned charger type i. First, we randomly select an
electric vehicle j ∈ J ′ and two time slots t1 and t2, where t1 is a time slot with
wt1

G = min{t∈Tj} w
t
G, and t2 is a time slot with wt2

G = max{t/∈Tj} w
t
G. Then, the

charging operation of vehicle j is moved from time t1 to t2 by deleting t1 from
Tj and adding t2 to Tj . This procedure is repeated k times for the same vehicle,
where k is randomly selected in {1, . . . , pij}. After each move, the vector wt

G is
updated as well as the objective value w̃G.

8 Simulation Results

The proposed algorithms are implemented in C++, and run on a desktop com-
puter with an Intel Core i5, 2.9 GHZ CPU and 8 GB RAM. The ILP model is
solved using CPLEX 12.8. In the following, we present our experimental results
on randomly generated instances.

We consider five groups of instances with different number of charging de-
mands n ∈ {10, 40, 50, 100}, different number of chargers m ∈ {15, 24, 27, 30},
and different power grid capacities wG ∈ {50, 75, 100, 125}. For each group, one
third of chargers deliver a power w1 = 11(kW), one third of chargers deliver
a power w2 = 22 (kW), and the remaining third of chargers deliver a power
w3 = 43 (kW). For each group, we generate 10 different random instances as
follows. The arrival times of vehicles are generated from the uniform distribu-
tion in the interval [0, 0.2n] (in hours). The required energy are generated from
the uniform distribution [5.5, 66] (in kWh). To generate the departure times of
vehicles, we first calculate the charging times p1j (in hours) for each vehicle j
∈ J assuming that it can be charged with chargers of type 1 (11 kW). Then, the
departure time of each vehicle j is calculated as dj = rj +(1+α)p1j , where α is
randomly chosen according to the value p1j as follows. For p1j in [0.5, 1], [1, 2],
[2,3], [3,4], [4,5], and [5,6] α is randomly chosen in [0.1, 1], [0.1, 0.9], [0.1, 0.8],
[0.1, 0.7], [0.1, 0.6], and [0.1, 0.5], respectively. On the basis of preliminary exper-
iments, we set the parameters µ, maxGenerated, maxTrials, acceptanceRatio,
and Tf to 0.12, 50, 100, 0.1, and 0.001 respectively. For the LS procedure, we
set the parameters maxNonImproving, maxGeneratedLS, the reducing factor
r and the initial acceptance p0 to 5, 5, 0.75, and 0.2 respectively.

We set the maximum computation time of CPLEX to 30 minutes. Table 1
provides a comparison of results obtained for the four groups of instances. The
first column denotes the instance number in the group. For CPLEX and the
heuristic, column ”scheduled” reports the objective value found, and column
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Table 1. Comparison results between CPLEX, the heuristic, and the SA algorithm.

instance CPLEX Heuristic SA
scheduled time (s) scheduled time (s) best worst average std time (s)

group 1 with n = 10, m = 15, and wG = 50

1 10 6.07 7 5.45E-05 10 10 10 0.00 3.56
2 9 1800.66 7 3.89E-05 9 9 9 0.00 23.12
3 9 1800.38 7 2.67E-05 9 9 9 0.00 19.54
4 10 3.98 7 8.70E-05 10 9 9.4 0.52 17.49
5 9 537.35 9 1.96E-05 9 9 9 0.00 21.66
6 10 18.17 6 4.74E-05 10 8 9.6 0.70 12.94
7 9 1800.48 7 3.17E-05 9 8 8.3 0.48 24.85
8 9 742.27 7 3.50E-05 9 8 8.7 0.48 24.43
9 9 46.03 6 5.14E-05 9 8 8.1 0.32 22.92
10 9 1800.66 7 3.21E-05 9 8 8.6 0.52 23.82

Average 9.30 855.60 7.00 4.24E-05 9.30 8.60 8.97 0.30 19.43

group 2 with n = 40, m = 24, and wG = 75

1 26 1802.38 27 1.37E-04 30 29 29.1 0.32 27.60
2 26 1802.27 25 2.19E-04 31 29 29.6 0.70 26.04
3 11 1801.35 23 2.08E-04 26 24 25.2 0.63 29.64
4 23 1802.33 19 4.86E-04 24 22 23.3 0.67 31.95
5 25 1801.64 21 2.17E-04 26 24 25.1 0.74 30.58
6 26 1802.17 25 1.34E-04 29 28 28.7 0.48 29.68
7 26 1801.81 26 1.02E-04 30 28 29.7 0.67 29.79
8 24 1801.51 23 1.66E-04 28 27 27.3 0.48 29.87
9 25 1801.89 23 1.38E-04 27 26 26.6 0.52 32.25
10 30 1802.85 30 9.83E-05 33 31 32.1 0.57 28.48

Average 24.20 1802.02 24.20 1.91E-04 28.40 26.80 27.67 0.58 29.59

group 3 with n = 50, m = 27, and wG = 100

1 21 1802.28 36 1.88E-04 41 39 40.20 0.79 34.45
2 31 1802.03 37 1.16E-04 44 42 42.70 0.67 34.62
3 16 1801.76 35 1.06E-04 41 38 39.50 0.85 32.63
4 34 1802.02 38 1.45E-04 44 42 42.80 0.63 30.70
5 22 1802.04 41 1.35E-04 45 43 44.10 0.57 33.17
6 24 1801.96 38 1.69E-04 41 40 40.80 0.42 34.59
7 23 1801.92 37 1.99E-04 42 40 41.10 0.74 32.79
8 31 1801.90 34 4.25E-04 39 37 38.00 0.67 35.74
9 33 1801.90 34 1.53E-04 37 34 36.10 0.88 35.74
10 15 1802.46 40 1.71E-04 45 43 44.00 0.67 33.12

Average 25 1802.03 37 1.81E-04 41.9 39.8 40.93 0.69 33.75

group 4 with n = 100, m = 30, and wG = 125

1 18 1806.49 76 6.08E-04 77 76 76.20 0.42 50.57
2 11 1806.12 81 2.39E-03 86 83 84.90 0.88 49.28
3 13 1805.92 76 2.32E-04 80 78 78.90 0.74 55.75
4 14 1806.03 75 3.54E-04 78 76 77.40 0.70 55.62
5 14 1806.01 75 6.24E-04 82 78 80.50 1.18 52.36
6 13 1805.99 77 2.65E-04 82 79 81.00 0.94 55.05
7 13 1805.57 78 2.43E-04 83 81 81.40 0.70 51.40
8 14 1806.07 73 6.58E-04 80 77 78.70 1.16 50.72
9 12 1806.21 74 3.89E-04 82 80 80.40 0.84 51.84
10 14 1806.14 77 3.88E-04 81 77 79.40 1.26 55.16

Average 13.60 1806.06 76.20 6.15E-04 81.10 78.50 79.88 0.88 52.78

”time” displays the total running time in seconds. Due to the stochastic nature
of the SA algorithm, ten independent executions were done for each instance.
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We report the best, the worst, and the average objective function value over
the ten runs in columns ”best”, ”worst”, and ”average”, respectively. Also, we
report the standard deviation of the mean objective function value in column
”std” and the average running time in column ”time”.

First, we can notice that CPLEX found six optimal solutions out of 40, all
in group one instances with ten vehicles (instances 1,4, 5, 6, 8, and 9 in group
1). All remaining instances were hard to solve for CPLEX within 30 minutes.
The SA also achieved six optimal solutions. However, it took an average time
of 17.16 seconds, while CPLEX took an average time of 225.64 seconds. As ex-
pected, the SA algorithm outperforms the heuristic since it is set to the initial
solution for the SA algorithm. The SA algorithm achieved the best solutions in
all instances. We calculate the average gap Gapbest(%) (resp. Gapmean(%)) be-
tween the objective values found by CPLEX SCPLEX and the best (resp. mean)
objective values found by the SA algorithm SSA as Gapbest(%) = SCPLEX−SSA

SSA
.

The Gapbest(%) values were 0%, -14.75%, -40.33%, and -83.23% for groups 1, 2,
3, and 4, respectively. The Gapmean(%) values were 3.68%, -12.54%, -38.92%,
and -82.97% for groups 1, 2, 3, and 4, respectively.The gap between the SA
algorithm and solutions found by CPLEX increases significantly with the size
of instances. The heuristic starts performing better than CPLEX in groups 3
and 4. Finally, we compare the proposed methods in terms of running time.
As expected, the heuristic is faster than the SA algorithm. The heuristic took
less than one millisecond, whereas the SA algorithm took an average running
time of 32.44 seconds. In summary, the SA algorithm outperformed CPLEX in
significantly less time.

9 Conclusion

This paper addressed the EVCSP in a charging station with different charging
types and limited overall power. We proved that the problem is NP-Hard and
we formulate it as an ILP model. It was hard for CPLEX to solve the ILP model
within 30 minutes. Therefore, we designed a heuristic and a SA algorithm com-
bined with an ILS procedure. We generated different instances to evaluate the
performance of the proposed methods. The experimental results underline the
efficiency of the proposed methods. We assumed that the data related to vehicle
charging demands were known in advance. In future research, we can study the
scheduling problem in real-time to handle charging demands with or without
reservations. Another challenge is considering multi-objective optimization to
add the objective of minimizing the charging costs.
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Abstract. Particle Swarm Optimisation (PSO) and Evolutionary
Algorithms (EAs) differ in various ways, in particular with respect to
information sharing and diversity management, making their scopes
of applications very diverse. Combining the advantages of both
approaches is very attractive and has been successfully achieved through
hybridisation. Another possible improvement, notably for addressing
scalability issues, is cooperation. It has first been developed for
co-evolution in EA techniques and it is now used in PSO. However,
until now, attempts to make PSO cooperate have been based on
multi-population schemes almost exclusively. The focus of this paper
is set on single-population schemes, or fine-grained cooperation. By
analogy with an evolutionary scheme that has long been proved effective,
the fly algorithm (FA), we design and compare a cooperative PSO
(coPSO), and a PSO-flavoured fly algorithm. Experiments run on a
benchmark, the Lamp problem, show that fine-grained cooperation based
on marginal fitness evaluations and steady-state schemes outperforms
classical techniques when the dimension of the problem increases. These
preliminary results highlight interesting future directions of research on
fine-grained cooperation schemes, by combining features of PSO and FA.

1 Introduction

Swarm intelligence is a source of inspiration for many optimisation algorithms,
for instance for Particle Swarm Optimisation (PSO) proposed by J. Kennedy
and R. Eberhart in 1995 [22], Ant Colony Algorithms [16], Artificial Bee Colony
Algorithms [20] or Bacterial Foragings [13]. The idea is to exploit the collective
behaviour of a set of entities, the same way as natural populations (flocks of
birds or ant colonies) search for food.

There is actually a proliferation of new techniques based on analogies to
animal behaviour [38]. With respect to the ongoing debate about the originality
and relevance of such a proliferation, we stress the fact that this contribution is
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not proposing yet another novel optimisation methodology, but making a point
on two established heuristics that date back over 20 years and might look similar
at first glance.

PSO is based on social interactions. The emerging collective behaviour results
from a balance between following a leader and following an individual focus,
thanks to inter-individual communications [31]. This mechanism is different
from Evolutionary Algorithms (EAs) that rely on genetic transmission and
natural selection analogies (birth, death and inheritance within a population).
An important difference between them is how they manage diversity and share
information5, making them best fitted to different optimisation tasks [19].

Among other desirable features, scalability is a major concern. A way to
deal with it is co-evolution, which was first developed for EA techniques [33]
and starts to be experimented for PSO [6]. There are two major existing
co-evolution schemes: mono- and multi-population [30], but as far as we know,
only multi-population schemes are used in PSO [18,42].

This study investigates the differences and commonalities between
intra-population communication in PSO and cooperative-co-evolution [12] as
implemented in the Fly Algorithm (FA) [26,41,3]. This paper is organised as
follows. After a rapid overview of the state of the art for PSO and cooperative
PSO (Section 2), mono-population cooperative co-evolution and FA (Section 3),
we propose a mono-population cooperative PSO (coPSO) and a new operator for
the FA in Section 4. These schemes are compared on a cooperative-coevolution
benchmark, the Lamp test case [39] in Section 5. The discussion and conclusions
are given in Section 6.

2 From PSO to cooperative PSO

Each entity of a PSO, called a particle, has a position in space and a velocity,
that determines a random movement depending on the context. Velocities and
positions are updated at each iteration using rules taking into account local and
collective memories, mimicking respectively a cognitive and a social behaviour.

Similar to evolutionary techniques, the theoretical understanding of swarm
intelligence is a formidable challenge: with very simple mechanisms, interactions
of a large number of elements produce a nontrivial global dynamic. Besides
experimental evidence that such a system is able to concentrate the population
into optimal areas of a search space [35], theoretical results for convergence and
convergence rates [31] exist and are based on simple PSO models. The parameter
settings and the structure of the update rules clearly have a crucial influence on
performance [37].

A canonical PSO can be described as follows [22]: each particle keeps track
of its own best known position pbest and has also access at any time to the global
swarm best known position gbest. An iteration loop is then implemented:

1. Particles are initialised with random positions and velocities.

5 via inter-individual communications in PSO or genetic inheritance in EAs
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2. Best known positions are computed (according to the function to be
optimised): pbesti for each particle i and gbest for the whole swarm.

3. For each particle i, velocity vi and position xi are then updated (in vector
notation, valid for any dimension of the search space):

vi(t+ 1) = ωvi(t) + φprp(pbesti − xi) + φgrg(gbest− xi) (1)

xi(t+ 1) = xi(t) + vi(t) (2)

where rp and rg are random values uniformly distributed between 0 and 1, ω
is the inertia weight, φp and φg are the cognitive and social learning factors.

4. The process is repeated from Step 2 until a stopping criterion is met
(e.g. stagnation, predefined level of fitness, or max. number of iterations).

The most common scheme, also called gbest strategy, corresponds to “fully
informed” particles aware of the state of the whole population. In another
important trend, called lbest strategy, each particle may only access local
information [31]. The update rule is the same, except that in equation (1) lbest,
a best local position, is used instead of gbest. This is more time-consuming as the
neighbours of each particle (according to a given topology) have to be identified.
This lbest scheme allows various subtleties to preserve diversity; neighbourhood
topology has a strong influence on the performance of the algorithms [23].
Topology may vary: the neighbourhood can be gradually enlarged according
to a topological distance or a graph hierarchy, sometimes using adaptive
strategies [31]. The lbest scheme is particularly useful in parallel implementations
when communication between processors is limited [42]. However, it may cause
trouble with high dimensional search spaces, as it relies on a distance measure
which may become computationally expensive with large swarms, besides the
fact that distance functions get less useful in high dimension spaces [27]. In this
paper, we will focus on gbest strategies only.

Diversity is an important issue in PSO, to avoid premature convergence. For
instance, dispersion and collision-avoiding mechanisms or repulsion mechanisms
have been proposed [42]. It has to be noted that multi-population approaches
have been developed for improving the management of diversity.

Cooperative PSO and multi-swarm models6 have been developed
for different purposes: to improve diversity [45,29], track multiple optima in
multimodal or dynamic multimodal landscapes [31,11], address multi-objective
problems [42], perform dynamic optimisation using adaptive strategies [8],
handle constrained optimisation [36], or deal with large search spaces, by
explicitly splitting the problem into interdependent sub-problems with smaller
dimensions [42].

Bergh and Engelbrecht [6] were the first to use a cooperative scheme,
in the style of Potter and De Jong [33,14] with separate sub-populations.
Cooperation comes from the exchange of information between sub-populations,
to build a composite fitness in the high-dimension problem. Usually the gbest
particles of other sub-swarms are used to evaluate the particles of a sub-swarm.

6 [18] defines cooperative search for any method as strategies that have several search
modules running and exchanging information to improve search capability.
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Fine tuning these algorithms is difficult [32], the choice of information to be
exchanged and the synchronisation strategies deeply affect performance. It has
been observed that “Increasing the number of cooperating swarms helps in
improving the performance up to a certain limit, after which, the solution starts
to deteriorate” [18].

Note that cooperative PSO developed until now corresponds to what we may
call coarse-grained cooperation, i.e. the swarms or sub-swarms are explicitly
separated: cooperation occurs at swarm-, not particle-level7.

3 Fine grained cooperative co-Evolution

Co-evolution is an extension of standard EAs [30] that “distributes” the encoding
of a solution onto several individuals. As a consequence the fitness of each
individual depends on other individuals. An early example of this technique is
the “Michigan approach” [44] for classifier systems, in which a single population
of individuals, each being a rule, is evolved to collectively achieve a given task
(rule-based machine learning). Another pioneering work is the multi-population
approach of Potter and De Jong [33], later transferred to the PSO model.
Co-evolution has actually been structured and exploited in optimisation in
quite different ways, according the interacting behaviour, competitive versus
cooperative [12,14,43,9,5,40] or the granularity of interaction: a single population
of interbreeding individuals versus multiple interacting populations [30].

Various versions of fine grained single-population cooperation have
been proposed: ”Parisian Evolution”[12,17] in 2000 and more recently ”Kaizen
programming”[15], ”FFX”[28] or ”ϵ-lexicase survival”[24]. In [12], all individuals
share the same representation, can exchange genetic material thanks to genetic
operators and evolve together inside a single population. The EA loop then
embeds an additional step at each generation for aggregating individuals to
build a solution, evaluate it and distribute rewards to individuals. The idea
is to exploit the evolution mechanism in a more parsimonious manner: where
a traditional Evolutionary Algorithm (EA) only keeps the best individual
as an optimum solution at the end of the evolution (forgetting all precious
information gathered by the population during its exploration of the search
space), a Parisian approach tries to capitalise the full potential of an evolved
population. It possess all usual features (e.g. mutation, crossover, and selection),
but with two possible levels of fitness: a local fitness to assess the performance
of a single individual (partial evaluation or local information) and a global
fitness to assess the collective performance of the whole population. Maintaining
diversity helps avoid degenerate solutions, e.g. when individuals gather in

7 However, an application to the generation of improvised music [7] implements both
types of cooperation, coarse and fine grained (this is not quite an optimisation,
but rather an exploration task). It was performed with multi-swarms: each particle
being a note (loudness, pulse and pitch of a MIDI event), each swarm a voice or
instrument, and the whole system being considered as an improvising ensemble.
Coherence is reached by self-organisation of particles and swarms.
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only a few areas of the search space. Finally, a solution is built from a
collation of individuals (sometimes with the concatenation of whole population).
The way the fitness functions are constructed and the solution is extracted,
are of course problem-dependent. Parisian Evolution has been successfully
applied to various optimisation problems, such as text-mining [25], hand
gesture recognition [21], complex interaction modelling in industrial agrifood
processes [4,5], imaging problems such as computer stereo vision in robotics [26],
tomography reconstruction in medical physics [2], and computer art [1].

A typical fine-grained cooperation is the Fly Algorithm (FA) [26]. First
designed for stereovision applications, the Fly algorithm evolves a population
of individuals called “flies”. It uses an “inverse problem” approach where
conventional approaches to stereovision use primitive extraction, pattern
matching and calculation of disparities [26]. In the original version, a fly is
defined as a 3-D point (x, y, z). A population of flies is initialised in the
field of view common to at least two cameras, then evolved using a classical
Evolutionary Strategy, guided by the flies’ fitness values. The solution is given by
the whole population (or a subset of the population), concentrated on the visible
surfaces of the objects in the scene [10]. The fitness of a fly is a measurement
of the consistency of its projections on the cameras. Classical operators –
mutation, optional CMX crossover, immigration (introducing brand new flies)
and tournament selection – are most commonly used.

4 Fine-grained optimisation based on PSO and FA

Particle Swarm Optimisation versus Fly Algoritm
Besides the narrative attached to each scheme (communications and social
behaviour versus genealogical features transmission and selection mechanisms),
PSO and FA share obvious features, and a parallel can be drawn between flies
mutations and particle movements, but this actually leads to a different balance
between diversification and intensification [19]. In particular, selection is not
used in PSO, although it is an explicit intensification mechanism. Additionally,
diversity preservation mechanisms are more explicit and tunable in FA, with
the help of an “immigration” operator that introduces a proportion of purely
random flies in the current population. We propose hereafter two different lines
for mutual cross-fertilisation (i) implementing the PSO algorithm using the
Parisian approach, and (ii) introducing the same information sharing mechanism
as in PSO into the FA.
A cooperative PSO: coPSO
A Cooperative Particle Swarm Optimisation (coPSO), in terms of fine grained
approach, consists in evolving, within a single swarm, particles that carry only
a small part of a solution. At each iteration of the algorithm it is necessary
to aggregate the particles of the swarm (or a selected part of it) to build the
problem solution. As for FA, there are now two levels of objective functions, an
optional global one computed on the whole swarm and a local one computed
for each particle. The local fitness function is used to update pbest. Due to the
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distributed nature of the approach, the social learning factor (φg in Eq. 1) is set
to 0 as it makes no sense to follow the global best particle (gbest). Eq. 2 remains
the same. In the experiments below, a marginal fitness8 is used at the local level.
FA as a Swarm: SFA
To introduce a ”PSO-like” information sharing mechanism within a FA, we
built an additional operator, the genealogical mutation. The idea is, for each
individual, to keep track of the best of its ancestors, according to the genealogy
due to the genetic operators. Additionally, an extra vector similar to the velocity
in PSO is attached to each fly. When a genealogical mutation is triggered, the
velocity and position of offspring are updated using Equations 1 and 2. For the
same reason as above, φg is set to zero. Note that this operator tends to focus the
search of a fly into the direction of its pbest. However, it may be too restrictive
(i) at the start of the optimisation when no knowledge is available, and (ii) at
the end of optimisation when the result needs to be refined. This is why an an
adaptive mutation scheme has been built.
Adaptive mutation
The adaptive genetic bi-operator, concurrently assesses two different genetic
operators (here Gaussian mutation and genealogical mutation) so that the most
successful operator in generating good offspring is favoured. Both operators are
initially given an equal probability of occurrence. Their success rates are checked
at regular intervals to adjust their probabilities. The update rule is multiplicative
as for the famous 1/5th rule [34].
Each operator has i) a counter to keep track of how many times it has been
applied and ii) an accumulator that keeps track of how many times it has been
successful. This accumulator is incremented if the marginal fitness of the newly
created fly is positive, decremented if negative. The success rate of an operator
is its accumulator divided by its counter. The probability of the most successful
operator over the last period is increased at the expense of the other one. The
probabilities are then clamped in the range 10%-90% to make sure that the least
successful operator retains a chance to be picked up.

5 Experimental analysis on a toy problem

A toy problem for cooperative-coevolution: the Lamps
There are few benchmarks designed for cooperative co-evolutionary algorithms.
The Lamps [39] is one of the toy problems available: the basic premise is to
optimally place a set of circles (lamps) of given radius, so that they completely
cover a square field. The fitness function rewards each lamp separately, and also
provides a global reward that depends on the overall placement of all lamps.
While each single lamp can be optimally placed on the square field, so that it

8 Positive or negative contribution of the individual to the global fitness, i.e. the
difference between the fitness of the population, when complete or deprived from this
particular individual. This concept has been successfully used in various applications,
see for instance [2]. In the absence of additional information at the local level for
building a specific ”local fitness”, marginal fitness is a convenient option.
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lits as much area as possible, it is interesting to notice that sometimes individual
lamps with sub-optimal positions (e.g. part of their area falls outside of the field)
can significantly improve the global reward (see Fig. 1). This simple toy problem
only has one parameter, the ratio between the radius of a circle/lamp and the
side of the square field (i.e. the ratio between the surface of a lamp and the
surface of the field), problem size = area room

area lamp . With higher parameter values,
more lamps are needed with more placement possibilities, making the benchmark
more challenging. A further difficulty can be added by introducing penalties for
overlapping lamps.

Fig. 1. Arrangement of a set of four lamps
to enlighten a square field. (left) The lamps
completely cover the square field, but part of
their own area is outside of the square itself.
(right) One of the lamps is now completely
inside the square, but the global solution is
unable to completely cover the square.

fitness =
area enlightened

total area
−W.

area overlap

total area
(3)

The fitness of a candidate involves the total area enlightened and the number
of lamps used. A weight W sets the balance with the overlapping term, see eq.
(3). Best solutions maximise the illuminated area whilst minimising the number
of lamps to cover the whole area. Tonda et al. showed that traditional approaches
based on genetic operators are competitive when the search space is relatively
small, i.e., for Lamps problem size less than 10 [39]. For more complex problems,
the Parisian approach outperformed the other algorithms tested.
Experimental setup
The Lamps problem with increasing sizes (3, 5, 10, 20, 100, and 500) has been
used for benchmarking the scalability of six algorithms:

– A traditional PSO with no algorithmic enhancement, as a baseline for
comparison (labelled PSO in the tables and figures below);

– The coPSO algorithm (labelled coPSO in the tables and figures);
– A steady state FA with marginal fitness, threshold selection, varying

population size using mitosis and slaughtering/culling, 30% of immigration
and 70% of Gaussian mutation (labelled FA);

– A steady state FA as above but with 30% of immigration, 35% of Gaussian
mutation, and 35% of Genealogical mutation (labelled SFA35);

– As above but with 30% of immigration, and 70% of Genealogical mutation
(labelled SFA70);

– As above but with 30% of immigration, and 70% of genetic bi-operator with
both Gaussian and Genealogical mutation (labelled SFA-bi operator).

The lamp radius is 8 and W = 1 (Eq. 3) to match the value initially used
in [39]. Algorithms 1 and 2 show the skeleton of FA and coPSO implementations,
displayed side-by-side to highlight similarities and differences. The structure of
the algorithms is fairly similar but coPSO lacks natural selection for killing and
breeding. The mutation in FA and the position update in coPSO are similar in
the sense that they both move an individual or particle from its current position.
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// Read problem specific data
// Set the algorithm

Initialisation

// Create the initial population of n
individuals

repeat n times
Create a fly at a random position in
the search space;

Add the fly to the population;
Add the fly’s contribution to the
population’s fitness;

end

Compute the global fitness;

repeat // Optimisation loop
repeat n times

repeat // Select a bad fly
i← Random(0, n− 1);
MF(i)← Marginal fitness of
Fly i;

until MF(i) ≤ 0;
Remove Fly(i)’s contribution
from the population’s;

Compute the global fitness;

Select genetic operator;
if Genetic operator is
immigration then

Replace Fly(i) with a
random fly in the search
space;

else // Mutation is used
repeat// Select a good fly

j ← Random(0, n− 1);
MF(j)← Marginal
fitness of Fly j;

until MF(j) > 0;

Copy Fly(j)’s genes into
Fly(i)’s;

Randomly mutate Fly(i)’s
genes;

end
Add Fly(i)’s contribution to
global fitness;

Compute the global fitness;
end

until Convergence;

Iteratively eliminate bad flies;

Convert the population of flies into
problem specific answer;

Algorithm 1: Steady state FA

// Read problem specific data
// Set the algorithm

Initialisation

// Create the initial swarm of n
particle

repeat n times
Create a particle at a random
position in the search space;

Initialise the particle’s velocity;
Add the particle to the swarm;
Add the particle’s contribution to
the swarm’s;

end

Compute the global fitness;

repeat // Optimisation loop
foreach Particle pi ∈ Swarm do

Remove pi’s contribution from
the swarm’s;

Update the pi’s velocity;
Update the pi’s position;

Compute the global fitness;

Compute pi’s local fitness
(Marginal fitness)

Update pi’s lbest if needed
end

until Convergence;

Iteratively eliminate bad particles;

Convert the swarm of particles into
problem specific answer;

Algorithm 2: Cooperative PSO.
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Algorithmic enhancements such as varying population or swarm size are not
shown to improve the readability of the pseudocode. In our experiment, we added
an extra loop so that each time stagnation is detected slaughtering/culling and
mitosis are alternatively triggered. In the slaughtering/culling step, bad flies
or particles are eliminated so that there are only good flies or particles left.
If triggering slaughtering/culling and mitosis does not help the population or
swarm improve the global fitness overN iterations (stagnation), the optimisation
ends and the problem solution is extracted. Our main stopping criterion is thus
stagnation.

N is set to 5 for coPSO, FA and SFA. However, it was empirically determined
that this number was far too low for PSO, which is why we use 50 in
our experiments. An additional stopping criterion is the maximum number
of iterations in case an algorithm fails to converge towards a solution. All
parameters are provided in Table 1.

Each experiment is repeated 100 times using a supercomputer to gather
statistically meaningful results9. That is 100 runs × 6 problem sizes ×
6 algorithms = 3600 optimisation processes in total. Each algorithm records
the global fitness of the solution it provided, and how many lamps needed to
be created and tested before a solution was accepted. This number is linearly
proportional to the computational power that was required to find the solution.

Results and discussion10

Quantitative results are given in Table 2. It highlights for each problem size
which algorithm(s) provides solutions significantly better (p < 0.05) than the
other algorithms. From the table it is clear that PSO performs best with small
problem sizes but collapses rapidly. It is also computationally intensive compared
to FAs. Figures 2 and 3 are a visualisation of these data in terms of global fitness
and computing time versus problem size in log scale.11

With small problem sizes, FA does not perform quite as well as PSO; Swarm
Fly Algorithm (SFA) is comparable to FA though a little less performing, and
coPSO does not perform well at all. With larger problem sizes, Figure 2 shows
that PSO collapses; FA stabilises, taking advantage of its scalability; coPSO
starts a shy improvement, showing that communication is only beneficial with
a larger problem size. Figure 3 clearly shows that PSO and coPSO are not as
efficient as FA and SFA. On both figures FA and the 3 variants of SFA are hard
to distinguish when the problem size increases. A zoomed scatterplot (Figure 4)
of global fitness versus computational effort (number of lamps created) gives a
more precise comparison for FA and SFA. FA’s performance decreases when the
problem size increases to become quite close to SFA35’s and SFA70’s. SFA-bi
operator is, however, more consistent and starts to slightly outperform FA in
terms of computing requirements (p < 0.05).

9 Except for the largest instance (size 500) for which only 50 runs were done.
10 Reproducibility: code available at http://doi.org/10.5281/zenodo.7101160
11 A synthetic scatterplot is also provided in https://evelyne-lutton.fr/Lutton_

EA2022-Additional.pdf for assessing the balance between both measurements.
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Table 1. Summary of the algorithms’ parameters.

PSO FA coPSO SFA35 SFA70 SFA-bi
operator

Initial number of
particles/individuals:

√
FA

3×pb size
3× pb size 3× pb size 3× pb size 3× pb size 3× pb size

Lamps per
particle/individual:

3× pb size 1 1 1 1 1

W in Eq. 3: 1 1 1 1 1 1

Immigration
probability (%):

N/A 30 N/A 30 30 30

Gaussian mutation
probability (%):

N/A 70 N/A 35 0 varying

Genealogical
mutation probability
(%):

N/A 0 N/A 35 70 varying

Initial Gaussian
mutation factor
(pixels):

N/A 16 N/A 16 N/A 16

Decrease of
mutation factor
per generation:

N/A 0.016 pixel N/A 0.016 pixel N/A 0.016 pixel

ω in Eq. 1: 1
2×log(2)

N/A 1
2×log(2)

1
2×log(2)

1
2×log(2)

1
2×log(2)

φp in Eq. 1: 1
2

+ log(2) N/A 1
2

+ log(2) 1
2

+ log(2) 1
2

+ log(2) 1
2

+ log(2)

φg in Eq. 1: 1
2

+ log(2) N/A 0 0 0 0

Stopping criteria
1) No improvement
over the last :

50 iterations 5 iterations 5 iterations 5 iterations 5 iterations 5 iterations

2) Max # of gen. or
iterations:

500 500 500 500 500 500

For each problem size, FA is the average number of lamps created over 100 runs of FA to reach the
problem solution.

6 Conclusions

The previous experiments are a first try with fine-grained cooperative swarms.
For the moment this has been reached with a single swarm in which social
communications have been cut (the gbest position has no influence on local
rules). Together with a convenient formulation of the problem (which information
is carried by a particle), this rough strategy (coPSO) is able to drive the full
swarm into a good solution, while having better scalability than the classical
gbest PSO. Marginal fitness is actually an indirect way to implement some social
communication, as it evaluates the contribution of a particle with respect to
the whole swarm. Less efficient than FA, a mature technique of fine-grained
cooperative based on EA, this simple coPSO however exhibits interesting
scalability properties (positive slope on Fig. 2 for large problem sizes).

Future improvements of this strategy can follow different lines. A first
one could be distance-based lbest strategies, but possibly limited in high
dimensions. Another line, sketched in this paper, is a combination of features
from Evolutionary Algorithms (life and death, genetic transmission) and swarms
(internal memory and social communication in the group). SFA is an attempt to
add a memory to the flies, in the same spirit as coPSO, as an inter-generational
transmission of information. The experiments displayed above prove that these
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Fig. 2. Comparison in terms of global fitness (maximisation).
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Fig. 3. Comparison in terms of computational requirement. This is a value that should
be as small as possible.
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Fig. 4. Performance comparison in terms of effectiveness (highest global fitness) and
efficiency (smallest number of tested lamps) zoomed onto FA and SFA. The best
algorithms are in the top-left corner of the plots.

inter-generational communications improve the scalability of FA. Making the
balance of the SFA mutations adaptive also yields important information
about the efficiency of these operators during the runs (see also supplementary
material).

Future work on this topic will aim at exploring the combinations of PSO and
FA, and extending the experiments to other benchmarks and real problems.
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Table 2. Results of the experiments.
Values for algorithms marked in bold
are significantly better (p < 0.05)
than the others for the same problem
size. Values in italics highlight cases
where the best performance is equally
achieved by two or more algorithms
(non separable, with p > 0.05).

Problem Global Lamps created
size Evolution fitness before acceptance

3 PSO 80.58 % ± 6.84 1.18e+03 ± 473.47

3 FA 75.81 % ± 4.22 1.32e+02 ± 100.75

3 coPSO 49.66 % ± 11.58 7.63e+02 ± 1560.97

3 SFA70 67.74 % ± 7.59 1.23e+02 ± 100.48

3 SFA35 69.03 % ± 7.56 1.08e+02 ± 79.37

3 SFA-bi operator 69.87 % ± 7.71 1.18e+02 ± 83.20

5 PSO 76.74 % ± 4.98 3.63e+03 ± 1296.64

5 FA 72.71 % ± 3.51 2.49e+02 ± 138.45

5 coPSO 50.09 % ± 8.51 1.73e+03 ± 1274.77

5 SFA70 64.82 % ± 5.23 1.95e+02 ± 152.83

5 SFA35 66.80 % ± 4.83 1.99e+02 ± 142.94

5 SFA-bi operator 67.21 % ± 4.74 1.75e+02 ± 129.27

10 PSO 71.44 % ± 4.48 9.89e+03 ± 2843.23

10 FA 69.11 % ± 3.28 5.15e+02 ± 301.90

10 coPSO 45.51 % ± 7.39 8.39e+03 ± 6427.39

10 SFA70 63.91 % ± 4.02 3.31e+02 ± 208.52

10 SFA35 65.13 % ± 3.90 3.55e+02 ± 225.33

10 SFA-bi operator 66.01 % ± 3.22 3.49e+02 ± 205.07

20 PSO 61.52 % ± 4.46 1.50e+04 ± 3893.98

20 FA 66.39 % ± 2.56 9.97e+02 ± 536.03

20 coPSO 48.12 % ± 6.07 4.37e+04 ± 27148.87

20 SFA70 63.49 % ± 2.81 6.77e+02 ± 290.76

20 SFA35 64.46 % ± 2.69 6.51e+02 ± 322.55

20 SFA-bi operator 65.47 % ± 2.26 7.09e+02 ± 253.34

100 PSO 49.74 % ± 2.26 1.20e+05 ± 34739.96

100 FA 64.47 % ± 1.11 4.33e+03 ± 1664.40

100 coPSO 52.86 % ± 4.53 2.14e+06 ± 1215718.00

100 SFA70 63.78 % ± 1.29 3.85e+03 ± 854.81

100 SFA35 63.81 % ± 1.42 3.86e+03 ± 912.96

100 SFA-bi operator 64.57 % ± 1.18 3.71e+03 ± 842.15

500 PSO 42.43 % ± 1.37 7.94e+05 ± 252250.84

500 FA 63.73 % ± 0.56 2.22e+04 ± 7000.81

500 coPSO 56.04 % ± 3.09 9.00e+07 ± 40418907.90

500 SFA70 63.66 % ± 0.61 2.02e+04 ± 3852.50

500 SFA35 63.81 % ± 0.57 2.07e+04 ± 4109.04

500 SFA-bi operator 64.03 % ± 0.54 2.01e+04 ± 3935.58

3. Ali Abbood, Z., Vidal, F.P.: Basic, dual, adaptive, and directed mutation operators
in the fly algorithm. In: Artificial Evolution. pp. 100–114. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-78133-4 8

4. Barrière, O., Lutton, E.: Experimental Analysis of a Variable Size
Mono-population Cooperative-Coevolution Strategy, pp. 139–152. Springer
(2009). https://doi.org/10.1007/978-3-642-03211-0 12

5. Barrière, O., Lutton, E., Wuillemin, P.: Bayesian network structure
learning using cooperative coevolution. In: GECCO. pp. 755–762 (2009).
https://doi.org/10.1145/1569901.1570006

6. Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization.
Evolutionary Computation, IEEE Transactions on 8, 225–239 (07 2004).
https://doi.org/10.1109/TEVC.2004.826069

7. Blackwell, T.: Swarm music: Improvised music with multi-swarms. In: Symposium
on Artificial Intelligence and Creativity in Arts and Science. pp. 41–49 (2003)

8. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments, p.
19–26. Springer-Verlag (2004)

9. Bongard, J., Lipson, H.: Active coevolutionary learning of deterministic finite
automata. Journal of Machine Learning Research 6, 1651–1678 (2005)

10. Boumaza, A.M., Louchet, J.: Mobile Robot Sensor Fusion Using Flies, pp. 357–367
(2003). https://doi.org/10.1007/3-540-36605-9 33

11. Brits, R., Engelbrecht, A., van den Bergh, F.: Scalability of niche PSO. In:
Proceedings of the IEEE swarm intelligence symposium, Indianapolis, Indiana,
USA, April 24–26. p. 228–234 (2003)

12. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS + Parisian genetic
programming = efficient IFS inverse problem solving. Genetic Programming and
Evolvable Machines Journal 1(4), 339–361 (2000), october

138



Fine-Grained Cooperative Coevolution 13

13. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial Foraging Optimization
Algorithm: Theoretical Foundations, Analysis, and Applications, pp. 23–55 (2009).
https://doi.org/10.1007/978-3-642-01085-9 2

14. De Jong, E.D., Stanley, K.O., Wiegand, R.P.: Introductory tutorial on coevolution.
In: GECCO ’07, London, UK (2007)

15. De Melo, V.V.: Kaizen programming. In: Igel, C., Arnold, D.V., Gagne, C.,
Popovici, E., Auger, A., Bacardit, J., Brockhoff, D., Cagnoni, S., Deb, K., Doerr,
B., Foster, J., Glasmachers, T., Hart, E., Heywood, M.I., Iba, H., Jacob, C., Jansen,
T., Jin, Y., Kessentini, M., Knowles, J.D., Langdon, W.B., Larranaga, P., Luke,
S., Luque, G., McCall, J.A.W., Montes de Oca, M.A., Motsinger-Reif, A., Ong,
Y.S., Palmer, M., Parsopoulos, K.E., Raidl, G., Risi, S., Ruhe, G., Schaul, T.,
Schmickl, T., Sendhoff, B., Stanley, K.O., Stuetzle, T., Thierens, D., Togelius,
J., Witt, C., Zarges, C. (eds.) GECCO ’14: Proceedings of the 2014 conference
on Genetic and evolutionary computation. pp. 895–902. ACM, Vancouver, BC,
Canada (12-16 Jul 2014). https://doi.org/doi:10.1145/2576768.2598264, http://
doi.acm.org/10.1145/2576768.2598264

16. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE
Computational Intelligence Magazine 1(4), 28–39 (2006)

17. Dunn, E., Olague, G., Lutton, E.: Parisian camera placement for
vision metrology. Pattern Recognition Letters 27(11), 1209–1219 (2006).
https://doi.org/https://doi.org/10.1016/j.patrec.2005.07.019, https://www.

sciencedirect.com/science/article/pii/S016786550500334X, evolutionary
Computer Vision and Image Understanding

18. El-Abd, M., Kamel, M.S.: A taxonomy of cooperative particle swarm optimizers.
International Journal of Computational Intelligence Research 4 (01 2008).
https://doi.org/10.5019/j.ijcir.2008.133

19. Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: Ga, pso,
and de. Industrial Engineering and Management Systems 12, 215–223 (09 2012).
https://doi.org/10.7232/iems.2012.11.3.215

20. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (abc) algorithm and applications. Artif Intell Rev 42, 21–57
(2014). https://doi.org/10.1007/s10462-012-9328-0

21. Kaufmann, B., Louchet, J., Lutton, E.: Hand posture recognition using real-time
artificial evolution. In: EvoApplications, LNCS 6024. pp. 251–260. Springer (2010)

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. vol. 4, pp. 1942–1948
(Nov 1995). https://doi.org/10.1109/ICNN.1995.488968

23. Kennedy J, M.R.: Population structure and particle swarm performance. In: CEC,
Honolulu, HI, USA, Sept 22–25. p. 1671–1676 (2002)

24. La Cava, M., Moore, J.: A general feature engineering wrapper for machine learning
using epsilon lexicase survival. In: J. McDermott, e.a. (ed.) Genetic Programming,
pp. 80–95. Springer (2017)

25. Landrin-Schweitzer, Y., Collet, P., Lutton, E.: Introducing lateral thinking in
search engines. Genetic Programming and Evolvable Machines 7(1), 9–31 (Mar
2006). https://doi.org/10.1007/s10710-006-7008-z

26. Louchet, J.: Using an individual evolution strategy for stereovision.
Genetic Programming and Evolvable Machines 2(2), 101–109 (Jun 2001).
https://doi.org/10.1023/A:1011544128842

27. Marimont, R.B., Shapiro, M.B.: Nearest Neighbour Searches and the Curse of
Dimensionality. IMA Journal of Applied Mathematics 24(1), 59–70 (08 1979).
https://doi.org/10.1093/imamat/24.1.59

139
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Abstract. In recent years, high-performance models have been intro-
duced based on deep learning; however, these models do not have high
interpretability to complement their high efficiency. Rule-based classifiers
can be used to obtain explainable artificial intelligence. Rule-based clas-
sifiers use a labeled dataset to extract rules that express the relationships
between inputs and expected outputs. Although many evolutionary and
non-evolutionary algorithms have developed to solve this problem, we hy-
pothesize that rule-based evolutionary algorithms such as the AntMiner
family can provide good approximate solutions to problems that cannot
be addressed efficiently using other techniques. This study proposes a
novel supervised rule-based classifier for binary classification tasks and
evaluates the extent to which algorithms in the AntMiner family can ad-
dress this problem. First, we describe different versions of AntMiner. We
then introduce the one-class AntMiner (OCAntMiner) algorithm, which
can work with different imbalance ratios. Next, we evaluate these algo-
rithms using specific synthetic datasets based on the AUPRC, AUROC,
and MCC evaluation metrics and rank them based on these metrics.
The results demonstrate that the OCAntMiner algorithm performs bet-
ter than other versions of AntMiner in terms of the specified metrics.

Keywords: AntMiner · Evolutionary algorithm · Rule-based classifier
· Ant colony classification · Imbalanced dataset · Binary classification ·
Synthetic datasets.

1 Introduction

In recent years, various highly scalable models have been developed using deep
learning [8, 10] and other machine learning models such as XGBoost [5]. Most
of these models are black-box models that are not interpretable by users. A
few of these models specify the importance of features to help users understand
which features are more helpful for predicting classes [15]. However, they do
not provide explicit relationships that allow human users to understand the
relationships between input and output variables, unlike a white-box model.
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Because rule-based classifiers [1] explicitly rely on individual variables in the
original data, they are powerful candidates for constructing white-box models.
Rule-based classifiers extract rules to explain the effects of individual variables
on a given class, as follows:

IF (Conditions) THEN (Consequent) (1)

Conditions are combinations of propositions for different input variables (terms)
bound by a logical conjunction (AND). The result of these combinations is the
consequent (i.e., classes). In this study, we focused on ordered-rule-based classi-
fiers. There are two methods for extracting rules: direct and indirect. In direct
methods, the algorithm directly operates on the data and extracts rules from the
data, as seen in the RIPPER [7], CN2 [6], PART [14], and RISE [11] algorithms,
or uses evolutionary algorithms such as the ant colony algorithm (AntMiner) [27]
to extract rules. In indirect methods, a classifier is first applied to the data and
then another method extracts rules from the classifier. Such methods include
the C4.5, J48 [29, 30], random tree [28], and REPTree [32] algorithms. These
tree-based algorithms first use a decision tree to classify data. Rules are then
extracted from the trees provided by the algorithms.

The goal of this study was to develop an algorithm to extract rules from pro-
vided datasets that works well with both imbalanced (i.e., when the amount of
data in one class is significantly less than the amount of data in another class) and
balanced datasets, and also determine a suitable method for the ranking algo-
rithms based on datasets with various imbalance ratios. Additionally, considering
the lack of suitable datasets for evaluating rule-based algorithms, we aimed to
generate datasets containing all possible instances for generating output classes
so that we could determine which algorithms could achieve the highest values
for the defined metrics with the availability of all possible instances and absence
of noise. Also, with these data, we can find out which algorithm is over-fitted or
under-fitted on the data. The remainder of this article is organized as follows.
Section 2 provides an overview of evolutionary approaches. Section 3 defines the
developed one-class AntMiner (OCAntMiner) algorithm, and Section 4 provides
an evaluation of the considered algorithms. Section 5 presents the evaluation
results. Finally, Section 6 concludes this article.

2 Related Work

Evolutionary algorithms (EAs) are used in optimization problems. They repre-
sent a subset of evolutionary computations [33]. The EA approach is inspired
by biological evolution and uses operations such as mutation, recombination
(crossover), and selection. A population evolves with the goal of maximizing a
given evaluation function. The main EAs used for learning rules are the learning
classifier system (LCS) [4] and AntMiner algorithms [27]. The LCS was intro-
duced by John Holland [17], and genetic algorithms were used to extract rules.
In contrast, AntMiner uses a simulated ant colony as a probabilistic approach
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to solve graph problems and find the best path to optimize an evaluation func-
tion. Ants choose their paths based on the amount of pheromones along paths,
which represents how many times a path has been selected successfully before.
Releasing pheromones in an environment (along paths) is a method for ants to
communicate. The path with the most pheromones should be shorter than the
others according to the current state of the search [12].

2.1 Evolution of AntMiner

Several versions of AntMiner have been released. We focus on the most im-
portant releases. As mentioned previously, the first version of AntMiner was
introduced by Parpinelli [27]. The second version was AntMiner2 [18], which
introduced a novel heuristic function. AntMiner+ [19] defined a directed acyclic
graph as a new environment for ants to select their paths more efficiently when
the AntMiner environment is fully connected. This means that AntMiner ants
must choose from all nodes at each decision point, whereas AntMiner+ ants
must choose only from nodes corresponding to a single variable. The continu-
ous AntMiner (cAntMiner) [24, 25] follows the concepts of AntMiner+ [19] and
removes the discretization step by dynamically determining the cutoff values
for continuous variables by selecting corresponding entropy minimization val-
ues. Ant-Tree-Miner [22] uses the ant colony optimization algorithm to learn
decision trees. The Ant-Tree-Miner algorithm follows the traditional divide-and-
conquer approach. It uses a stochastic process based on heuristic information and
pheromone values during tree construction to define the nodes (attributes) of
trees instead of applying greedy deterministic selection. In the Pittsburgh cAnt-
Miner (cAntMinerPB) [20, 26], a search for the best list of rules is performed,
whereas in AntMiner, a search for the best single rule is performed in each step
of the sequential coverage process. In other words, in cAntMinerPB, the search
is guided by the quality of a candidate list of rules, whereas in AntMiner, it is
guided by the quality of a single rule. In the unordered cAntMinerPB (UCAnt-
MinerPB) [21,23], the underlying concept is the same as that of cAntMinerPB,
but the goal is to generate an unordered set of rules.

2.2 Quantitative algorithm ranking

The main objective of this study was to construct an algorithm that is appli-
cable to binary classification tasks and evaluate it using datasets with various
imbalance ratios. According to our review, researchers typically use the UCI
database [13] to verify the accuracy of their algorithms. The problem is that
in most of the corresponding datasets, only a small portion of the total data
is provided; thus, all possible input instances are unavailable. Based on the in-
completeness of these datasets, we may not be able to trust the results of the
ranking of algorithms, even if we use different cross-validation methods, because
we may inadvertently overfit or underfit the given data. To solve this problem,
we aimed to generate datasets that can produce imbalance ratios similar to the
UCI datasets while considering all possible data points, without noise (i.e., 100%
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(a) Different solutions for defining a
boundary

(b) Best boundary separator between two
classes of data points

Fig. 1: Different data boundaries based on noise or new data entry

of possible instances for given inputs). We think that these artificial datasets,
can give a good insight about real world because they cover different imbalance
ratios via different linear and non-linear problems. Additionally, we intended to
compare the ranking of algorithms using the generated data and UCI data.

Another important question is which metrics are the most suitable for rank-
ing algorithms. Among the studies mentioned in the previous sections, most
researchers used the accuracy metric to rank their algorithms. Unfortunately,
this metric is not the most suitable for ranking algorithms when considering
both balanced and imbalanced datasets. A few studies have used the area under
the receiver operating characteristic curve (AUROC) as an evaluation metric.
However, when faced with high imbalance ratios, the AUROC is not a suitable
option. In such cases, one should consider using another metric such as the area
under the precision-recall curve (AUPRC) [31]. In this study, we considered both
the AUPRC and AUROC to rank different algorithms. By using relevant datasets
and metrics, we identified the limitations of the AntMiner algorithms in terms of
handling datasets with high imbalance ratios and attempted to overcome these
limitations. To this end, we developed a novel algorithm called OCAntMiner,
which is presented in section 3.

3 OCAntMiner

This section presents our proposed OCAntMiner (One-Class AntMiner) algo-
rithm. As shown in Fig1a, it is possible to define different boundaries for dis-
criminating two classes of data, which becomes particularly important when
dealing with imbalanced data.

The amount of data that can express a minority class is very small and
noise in these data can completely distort the output of prediction. As shown
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Input : TrainingSet : all.training.cases
Output: Discovered.Rules.list[]

1 WCTP = MajorityClass;
2 while TrainingSet >Max uncovered cases do
3 t = 1 ; /*ant index*/
4 j = 1 ; /*convergence test index*/
5 pheromones = init.phermones();
6 Rule = [] ; /*empty rules*/
7 repeat
8 Rule[t] = add terms based on heuristic function and pheromones;
9 Prune Rule[t] ; /*based on quality function*/

10 if Consequent of Rule[t] != WCTP then
11 Quality[Rule[t]]=0;
12 end
13 Update the pheromones;
14 if Rule[t] is equal to Rule[t-1] then
15 j = j + 1;
16 else
17 j = 1;
18 end
19 t = t + 1;
20 until (t >= No.of.ants) OR (j >= No.rules.converged);
21 R.best =best(Rule) ; /*Rule with highest quality among all Rules*/
22 if Consequent of R.best == WCTP then
23 Add rule R.best to Discovered.Rules.List; ;
24 TrainingSet=TrainingSet-(set of cases correctly covered by R.best);
25 end
26 end

Algorithm 1: High-level pseudocode for OCAntMiner

in Fig1a, only five data points belong to class Star (minority class) and all
other data belong to class Plus (majority class). Our goal in this study was to
develop an algorithm that works on existing data without the need to add or
remove data. As shown in Fig1b, if we add green data points to the existing data
(either noise or true data) and if these data are added to the minority class, they
can significantly change the boundaries of the minority class. However, for the
majority class, the addition of new data does not significantly shift the boundary
because the rest of the data can pinpoint the location of the boundary.

In previous versions of AntMiner, the majority class was considered as the
default class and the algorithm searched for rules to explain the minority and
majority classes with no restrictions on finding rules for each class. As a result,
the algorithm could provide rules to describe the majority class and rules to
describe the minority class, or only rules to describe the minority class. Our idea
is to limit the algorithm to the majority class and extract rules only for that class.
The reason for choosing the majority class to extract rules instead of the minority
class is that there are more data for the majority classes in datasets, meaning
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more precise rules can be derived to express such classes. If we can describe one
class very well, then another class will be easily discriminable. One goal of this
study was to evaluate the impact of integrating this approach into AntMiner-
based algorithms. The OCAntMiner pseudocode is presented in Algorithm 1.
OCAntMiner extends the original AntMiner by focusing on the extraction of
the majority class, which is defined as the class with the highest frequency in
the class distribution of training samples. The pheromone update, pheromone
initialization, heuristic, and quality functions rely on the AntMiner model. To
focus on the majority class, the first step is to detect which class to predict
(WCTP), afterward, algorithm was modified to extract rules related to this class
(the modifications are highlighted by red in Algorithm 1). Most other changes
to the original version aim to prevent the algorithm from generating minority
class rules. In line 10, the algorithm checks for the consequents of extracted
rules. If the consequent does not match the value of the majority class, then the
quality of the rule is equal to zero. Similarly, in line 22, when all ants provide
their solutions (rules), the best solution (R.best) is selected based on the quality
measure. If the consequent of R.best is equal to the value of the majority class,
then R.best is added to the list of discovered rules and the cases correctly covered
by R.best are removed from the training set.

4 Evaluation

In this section, we first provide a detailed overview of our datasets and then our
methodology for evaluating algorithms. Subsequently, relevant evaluation met-
rics are identified and justified. Finally, the algorithms selected for the evaluation
process are presented with their configurations.

4.1 Datasets

For evaluating and comparing their algorithms on classification tasks, most re-
searchers use various UCI datasets [13] as a reference. However, as explained
previously, these datasets do not provide all possible data instances, and con-
sequently, we are unable to rely on ranking based on insufficient information.
Additionally, we aimed to evaluate the algorithms under different conditions
(i.e., different imbalance ratios), and it was unknown whether these datasets
covered a large variety of possible scenarios.

To overcome these limitations and evaluate our algorithm, we used a dataset
generator that allowed us to consider all of the complexities and relationships
between input and output variables. Because we wished to generate datasets
containing classes based on rules, we used binary logic to generate rules and
considered inputs and outputs as binary values. The AND, OR, and NOT oper-
ators were used to generate all possible combinations and relationships between
input variables. We assigned the desired number of input variables (four and
eight in this study) to the generator for generating random rules. Then, based
on the number of inputs, it generated all possible instances, and based on the
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generated rules, it evaluates the inputs and generated class outputs (e.g., for
eight binary inputs, we generated 28=256 different instances, that is, the num-
ber of possible instances without replacement for eight inputs).

Four and eight features as inputs may seem to be small numbers. However, as
indicated in the results section, the complexity that these number of variables can
generate is so high that there is no need to consider greater numbers of inputs at
this time. The 24 generated datasets cover, imbalance ratios from 1 to 9361. This
method allowed us to generate all possible combinations of relationships between
variables for each dataset and a very wide range of complexities. For assessment,
we used five generated datasets with four inputs, 19 generated datasets with eight
inputs, and five UCI binary datasets (Breast Cancer, Breast Cancer Wisconsin,
Haberman, Hepatitis, and Tic Tac Toe).

4.2 Methodology

We first evaluated the algorithm performance using data that comes from data
generator for the reasons mentioned in Section 4.1. The objective was to evaluate
the performance of the algorithms in different scenarios. Therefore, we tested the
algorithms with two different sampling percentages. In the first scenario, we fed
all possible instances (i.e., 100% of the data) to the algorithms as training data,
and use same data for testing, and then with metrics checked the behavior of
the algorithms to determine which algorithms were capable of categorizing data
in the best possible manner (i.e., fully predict the output and e.g. AUROC
= 100%) considering the clarity and presence of answers in the data and the
absence of noise. We know that this action may cause some models to overfited
on the data. And we’ll check that with the second scenario. Our objective in
this scenario is just to verify the learning power of the algorithms. In the second
scenario, we checked the performance of the algorithms using 50% of the all data
points as training data and use 100% of data for testing. This scenario measured
the robustness of the algorithms when only half of the samples were available
for training. For this purpose, we randomly split the data into 10 folds (10-fold
cross-validation) and, stored these folds. Then We run each algorithm 10 times
and used 10 folds each time to make the results more reliable, and then use them
to evaluate algorithms. Finally, we compare the ranking of the algorithms in two
scenarios to see which algorithms were able to achieve the highest ranking in
both scenarios.

To evaluate and understand the results of comparing the proposed algorithm
to the other algorithms, we followed two steps. First, we described the results
based on the mean and standard deviation of different runs. Second, statistical
methods (i.e., AutoRank tools) were used to rank the algorithms based on their
performance measures [16]. Specifically, we adopted the Demsar method [9]. The
Demsar method was used to highlight both the ranking results of the benchmark
and to show how much the performances of the different algorithms varied from
each other.

To compare the algorithms and rank them according to classification per-
formance, because the datasets used for evaluation were highly imbalanced, we
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considered classification metrics that yield good results in this domain, including
the AUPRC, AUROC [3], and Matthews correlation coefficient (MCC) [2].

4.3 Selected Algorithms

To demonstrate the performance of the proposed OCAntMiner algorithm com-
pared to other algorithms, we selected algorithms from the category of evolu-
tionary algorithms for the sake of fair comparison. However, we also went a
step further and compared it to non-evolutionary algorithms to demonstrate the
power of the proposed algorithm. We selected different versions of AntMiner,
namely, the original version of AntMiner [18], cAntMinerPB [26], UCAntMin-
erPB [23], and cAntMiner [25]. For direct and non-evolutionary algorithms, we
also selected some algorithms from Weka [34] like RIPPER [7], PART [14], and
RISE [11], and for indirect algorithms, we selected J48 [29,30], and REPTree [32].

4.4 Algorithm parameters

We used the same input parameters for all algorithms, namely, "Size of Ant
colony" = 60, "Maximum number of iterations" = 1500, "Minimum covered
cases per rule" = 10, "Number of uncovered cases set" = 10, and "Rule quality
function" = Sensitivity × Specificity. In the next section, we present the results
of different algorithms based on the described metrics.

5 Results and Discussion

5.1 Evaluation of algorithms from a classification perspective

In this section, we compare different algorithms from a classification perspec-
tive. For this purpose, we consider three different metrics (AUROC, AUPRC,
and MCC) to evaluate the accuracy of dataset. To verify the algorithms in dif-
ferent scenarios, we applied two different sampling percentages (100% and 50%)
to the input data. Our first scenario is to provide the algorithms 100% of the
data samples (i.e., all possible instances without replication) for training and
testing data to evaluate whether they can achieve the maximum value (e.g., AU-
ROC = 100%) when all possible samples are used. Because all possible samples
are provided to the algorithms, we expect the algorithms to adapt to the data
and provide the maximum AUROC, AUPRC, and MCC values for the testing
data. In Table 1, mean values of different runs were sorted by the AUPRC
metric, and the highest values are bolded. In left side of this Table we consider
a second scenario in order to see what happens when we give only half part of
possible data samples, and which algorithm can predict the output better. As
can be seen in the Table, the results decrease compared to using all possible
data samples (right side of Table 1), but still, OCAntMiner gives the best result
on AUROC, AUPRC, and MCC in comparison to other Antminer algorithms.
However, when considering the non-evolutionary algorithms, RIPPER provides
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Table 1: Mean [Std] using 24 synthetic datasets with different sampling.
50% of whole possible instances 100% of whole possible instance

AUROC AUPRC MCC AUROC AUPRC MCC

OCAntMiner 90.64 [9.21] 89.48 [16.66] 80.82 [17.56] 95.10 [8.71] 93.87 [11.37] 92.72 [13.19]
RIPPER 90.56 [15.59] 92.43 [19.99] 77.08 [32.84] 94.52 [14.13] 95.34 [18.76] 85.97 [30.68]
IREP 86.82 [17.28] 90.2 [20.77] 71.26 [35.33] 93.31 [14.58] 94.49 [19.01] 85.75 [29.09]
UCAntMinerPB 82.40 [18.35] 81.73 [24.73] 57.42 [35.23] 82.53 [21.81] 84.56 [24.66] 62.08 [42.44]
Jrip 81.58 [19.44] 87.42 [21.16] 63.40 [34.7] 81.57 [21.09] 88.90 [20.55] 66.03 [36.67]
cAntMinerPB 76.91 [19.1] 74.66 [29.49] 45.09 [33.78] 77.41 [19.25] 75.15 [28.83] 49.90 [35.52]
Rise 76.12 [5.12] 84.62 [12.99] 45.74 [20.58] 100.0 [0.0] 100.0 [0.0] 100.0 [0.0]
J48 72.42 [19.08] 81.39 [23.6] 43.39 [38.41] 78.71 [19.87] 87.13 [21.96] 53.67 [40.81]
AntMiner 72.32 [16.99] 73.69 [28.8] 41.70 [31.79] 75.02 [20.63] 74.84 [29.35] 48.12 [38.65]
REPTree 70.99 [19.33] 80.28 [23.35] 40.21 [38.54] 77.60 [19.67] 83.59 [23.12] 50.92 [39.27]
cAntMiner 69.45 [19.18] 73.83 [29.05] 36.11 [35.36] 73.54 [18.91] 74.78 [28.76] 45.82 [36.28]
PART 69.27 [18.59] 72.31 [30.19] 42.29 [33.42] 65.93 [21.22] 70.90 [30.91] 37.13 [37.4]

better performance in terms of the AUPRC metric. Also, this Table shows re-
sults using 100% of all instances. Rise algorithm achieves the best values for
all metrics but when we look at the result with 50% sampling, result dramat-
ically decreases and it is sign of overfitting or underfitting. But the results of
algorithms OCAntMiner and RIPPER have not differed much and have kept
the same position as before. In Table 2, we compare the original AntMiner to
the improved version (i.e., OCAntMiner) with more specific criteria using 50%
sampling of all possible instances of the generated datasets. The results indicate
that the number of rules is reduced by 43%, runtime is improved by 47%, and
AUPRC is improved by 15.87% when using OCAntMiner. This demonstrates
that the proposed algorithm provides fewer rules in less time and is more accu-
rate for prediction. In this section, we presented the results in terms of the mean
and standard deviation for different sampling percentages. In the next section,
we examine the ranking of the algorithms in detail using statistical methods and
the UCI datasets.

Table 2: Comparison using 50% of all possible instances of 24 synthetic datasets

Algorithm Number of rules Time(S) AUPRC

AntMiner 667 3400 78%

OCAntMiner 375 (↓ 43%) 1778 (↓ 47%) 93.87% (↑ 15.87%)

5.2 Ranking of Algorithms

In this section, we rank the algorithms using a statistical approach based on
AutoRank tools using both UCI and synthetic datasets. Because the data under
analysis do not follow a normal distribution, the Friedman test with the Nemenyi
post-hoc test was applied to rank the algorithms and divide the algorithms into
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different groups based on the critical distance (CD) metric. As shown in Fig 2,
the algorithms were ranked based on the AUROC metric using UCI datasets.
One can see that the most performant algorithm is the proposed OCAntMiner,
followed by J48. This figure also shows that OCAntMiner, J48, RIPPER, and
IREP are in the same group and there is no significant difference between them,
but they are significantly different from the other algorithms. It also shows that
the original version of AntMiner is in the group with the worst results along
with different versions of AntMiner. With our modifications, it jumps to the first
group and first rank. Additionally, we performed another test with 24 synthetic
datasets and 50% random sampling. The results are presented in Fig 3, and
shown that, RIPPER has the highest ranking, followed by OCAntMiner. This
figure also shows that OCAntMiner provides significantly better results than
the other versions of AntMiner and is clearly in the top group. These results
indicate that despite being in the same group as RIPPER, there is still room for
improving OCAntMiner.

Fig. 2: AUPRC on UCI datasets with 10-fold cross-validation.

Fig. 3: AUPRC on synthetic datasets with 50% of data with 10-fold.

6 Discussion and Conclusions

In this study, we focused on rule-based classifiers, specifically the AntMiner al-
gorithm family, for extracting classification rules from a given dataset. The most
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important part for the classification task are validation results, because if such
results are not calculated properly, it can lead to incorrect directions for im-
proving existing algorithms. For validation, there are two important features,
the datasets, and metrics used for validation. Most studies have used the UCI
database for evaluating algorithms in different areas with varying complexities.
However, most UCI datasets cannot provide all possible instances for data in-
puts to facilitate the measurement of the intrinsic performance of algorithms
when seeking a binary function. Interestingly, no AntMiner algorithm was able
to consistently achieve values of 100% for the metrics used when all instances
were provided. When evaluating and ranking different algorithms using synthetic
datasets with 50% of all data instances, overfitting or underfitting to the given
data may have occurred. The same phenomenon should occur with the UCI
data, but because we did not have all data instances, we could not verify this
phenomenon.

Another limitation of using UCI datasets is that we do not know the extent
to which the data used for ranking cover different complexities for the target
problem. Our contribution to solving these problems was the introduction of a
dataset generator that generates datasets with various imbalance ratios, covers
different complexities, and provides all possible instances for a given number of
input parameters. With all possible instances, we can check whether the algo-
rithm is overfitted or underfitted to the data. Therefore, we divided our tests
into two scenarios. The first scenario used 100% of the data for training and the
same data for testing. In the second scenario, we used 50% of all data instances
with random sampling for the training phase and 100% of the instances for the
testing phase. This allowed us to check how classifier rules were extracted for
all data instances. The results of the different algorithms for 100% and 50% of
all possible instances are presented in Table 1. As shown on the right side of
this table (i.e., 100% sampling), the maximum values for AUROC, AUPRC, and
MCC are 100% and the Rise algorithm can achieve these values, indicating that
this algorithm either overfits the data or fits the data properly. To understand
which one of these scenarios occurred, we should consider the results for 50% of
the data (i.e., left side of the table). As shown using 50% of data, Rise algorithm
is not ranked first anymore and shows a very poor result for the MCC metric
(i.e., 45.74%), indicating that the algorithm likely overfitted the data, which is
why the solution provided for 50% of the data is not as good as that for 100%
of the data. Another interesting point in this table is that the OCAntMiner
and RIPPER algorithms retain the same ranks for the two different sampling
percentages based on different metrics, indicating that these two algorithms are
robust to overfitting. This also indicates that they are likely not underfitted to
the data because they achieve the highest values for different metrics.

Another issue that we observed in AntMiner was that this algorithm sets the
majority class as the default class and then attempts to find rules to describe the
majority and minority classes. As a result, three outputs may be generated at
the end of executing the algorithm: 1) some rules describing the majority class
and some rules describing the minority class, 2) all rules describing the minority
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class, or 3) no rules extracted from the data and only the default class is used for
all data instances. As shown in Fig 1, the distribution and boundary of majority
data points are more reliable than those of minority data samples because there
may be too few instances for describing the minority class. As a result, noise in
the data or lack of instances may confuse the extraction of rules. This is why
simply describing the majority class seems to be a powerful approach to solving
this problem. Our main contribution in this study is highlighting the relevance
of this approach, which, to the best of our knowledge, has not yet been applied
to any AntMiner-based algorithm. We implemented this approach by modifying
the first version of AntMiner and forced the algorithm to extract rules for the
majority class alone. Therefore, the algorithm used the minority class as the
default class and attempted to find the rules for majority data instances. As
shown in Table 2, after adding this feature to the first version of AntMiner, the
number of extracted rules decreased dramatically (43%) and the classifier with
fewer rules could still detect the behavior of the data. This approach also reduced
the runtime by 47%. Furthermore, the AUPRC was improved by 15.87%. These
results demonstrate that with this added feature, we can reduce the runtime and
number of rules while improving data classification performance. Additionally, as
shown in Table 1, by adding this feature, we achieved a big jump in performance
(from the second-worst AntMiner to the best). This jump demonstrates the
strength of the components added to the algorithm to handle datasets with
various imbalance ratios.
We performed a statistical test using the Demsar method to rank the algorithms
considering the uncertainty in ranking caused by the number of datasets used in
the experiments and variance of the results. As shown in Fig 2, we first ranked
the different algorithms based on the UCI datasets with 10-fold cross-validation
to demonstrate how the proposed algorithm works on datasets used in previous
studies. The results reveal that OCAntMiner ranks first among all evolutionary
and non-evolutionary algorithms. Statistically, it is in the same group as the
J48, RIPPER, and IREP algorithms. We also applied the Demsar method to
the algorithms using 50% of all possible instances, and the results are presented
in Fig 3. The results show that OCAntMiner ranks second among all algorithms,
but ranks first among the different versions of AntMiner. Additionally, this test
indicated that OCAntMiner belongs to the same group as RIPPER and IREP.
This figure also reveals that the ranking of the J48 algorithm is dramatically
reduced compared to that in the previous figure using the UCI data. Several
interpretations can explain this phenomenon. For example, synthetic datasets are
more general than UCI datasets and cover more complex problems. Under these
conditions, J48 may not classify some datasets properly or the five UCI datasets
may not be sufficient to rank the algorithm (5% error in ranking). Finally, we
demonstrated that modifying the AntMiner process can significantly improve its
results without supplementing or modifying the heuristic or quality functions.
In future work, we will consider adding this feature to other AntMiner models,
and we also want to extend this method with multiple classes and analyzing the
resulting algorithm behavior.
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Abstract. Container terminals perform as connection points between land-based 

and maritime modes of transportation, and they serve as hubs and transfer stations 

for multimodal transport. This work discusses the problem of storing hazardous 

containers in a container terminal. The main purpose of this paper is to maximize 

the distance between incoming hazardous containers after determining the best 

locations in the storage yard to avoid interaction between them, as well as to 

ensure good locations for inflammable liquid goods to avoid leaks from any 

accident that could occur at any time. In this paper, we propose an optimization 

model with a mixed-integer linear program to solve the dangerous container 

placement problem. This problem is NP-Hard and cannot be solved using 

optimization solvers, so we propose a bee algorithm to solve it. Numerical 

simulations prove the effectiveness and efficiency of the algorithm compared to 

the results given by Gurobi [17]. 

Keywords: Container terminal, Dangerous container, Bee Algorithm (BA), 

Mathematical Modelling, Container storage problem, International Maritime 

Dangerous Goods Code. 

1 Introduction 

The safety of the port, particularly the storage of dangerous commodities in container 

yards, becomes the focus of concern. Thus, Effective risk control is a critical component 

of accident prevention [1].  In recent years, the global transport of containers containing 

dangerous goods has grown significantly, creating considerable dangers at seaports and 

adjacent communities, as well as bringing inherent environmental and safety-related 

disaster risks. Beirut Port is the largest container port in Lebanon, followed by Tripoli 

Port in terms of area and importance. Since Tripoli port is the second largest port in 

Lebanon, we resort to avert a repeat of the tragedy that occurred in Beirut's port in 

August 2020, a strategic choice must be made to deal with and fix the deficiencies 

observed in Tripoli-port. The goal of our research is to improve the management of the 
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hazardous container storage yard at Tripoli-port by considering and respecting some 

conditions for better storage while optimizing storage space available for imported 

containers using the bee algorithm meta-heuristic. 

The container terminal is an essential part of the port where containers are stored and 

handled, and is an important intermodal transport interface for the global transport 

network. Due to its importance in trade, the terminal container yard plays a similar vital 

role in influencing the overall performance of the seaport. The storage area for inbound 

containers at the port of Tripoli contains up to 50 bays (in length), each bay consists of 

6 stacks (in width) and each stack contains 6 containers of the same size. The most 

regularly used types of handling equipment in the Port of Tripoli for loading and 

unloading trucks are RS (Reach Stackers) and/or RTGC (Rubber Tired Gantry Crane) 

based on the container volume (20 TEUs and 40 TEUs) mostly used in the port. 

Unloading, Staking, and Loading are the three primary container-related processes in a 

container terminal. First, containers are unloaded from ships using Quay Cranes that 

are able to lift the several tones of container on trucks which are meant of short-distance 

haulage and then relocated to storage yard using handling equipment. Second, 

containers are stored in their designated area, subject to physical restrictions and 

regulations. Third, containers leave the storage yard and are loaded onto train or ships 

for transportation. 

A container is a large, rectangular, metal box used to carry products from one 

location to another. Hazardous materials or dangerous items are terms used to describe 

goods that are potentially harmful. This refers to goods or materials that may be 

hazardous to humans or the environment. Nine certified main classes of dangerous 

goods are listed, according to the International Maritime Dangerous Goods (IMDG 

code), as follows: Explosives, Gases, Flammable liquids, Flammable solids, Oxidizing 

substances and organic peroxides, Toxic and infectious substances, Radioactive 

material, Corrosive substances and Miscellaneous dangerous substances and articles.  

Each class has its own storage constraints. Containers of one class cannot be stored next 

to another class, they must be separated by a fixed space. Containers are temporarily 

stored in the storage yard on arrival and departure from the ports. It is quite common 

for ports to store non-hazardous and harmful products in the same place, which poses 

risks. The need to detain hazardous products requires consideration of other restrictions 

to the general safety of the goods to be examined. Accordingly, dangerous products are 

divided into separate classes and must be separated from incompatible goods. Because 

the Port of Tripoli does not load more than 40 hazardous inbound containers of various 

classes per month, and these containers do not stay in the storage area for an extended 

period of time, and because the most heavily loaded classes are Flammable liquids 

(Class 3), Oxidizing substances (Class 5) and organic peroxides (class 8). Stacking 

dangerous containers in the storage yard is a complex process, and it is very difficult to 

arrange them due to its complexity, so great efforts are required to carefully organize 

the storage area in the terminal. Since that stacking dangerous containers is a 

complicated process, the decision was made to study just 5 of the 9 hazardous container 

classes, which are Flammable liquids (class 3), Oxidizing substances and organic 

peroxides (class 5), Toxic and infectious substances (class 6), Radioactive material 

(class 7) and Corrosive substances (class 8), by applying all of the options for spacing 
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them by a predetermined fixed distance according to the IMDG code table in order to 

avoid any interactions. The interest of this work is to develop a model that allows the 

identification of the best location for inbound hazardous containers in a large storage 

area using a bee algorithm that have a high potential for practical applications. The goal 

is to keep the container terminal in a secure condition. 

This paper focuses on solving the problem of stacking inbound dangerous containers 

by optimizing the distance between them while adhering to constraints and rules to 

avoid any accident, and avoiding stacking inflammable liquid goods containers on the 

yard storage's edges and along the parallel line to the exit door. In Section 2, we present 

the literature review for the various works in the field of containerization. In section 3, 

we present the definition problem. In section 4, we obviously demonstrate and explain 

the mathematical model. In section 5, we describe the bee algorithm.  In section 6, we 

present the obtained results. In the section 7, we conclude with some perspectives. 

2 Related Work 

Due to the very large number of port accident reports that have appeared between 

1960 and 2010 according to the Failure and Accidents Technical information System 

(FACTS) database, which means an average of 19 different port accidents per year 

occurred, either during transhipment, storage, human failure, technical failure and so 

many possible causes of failure that can result an accident in the terminal (Häkkinen 

and Posti, 2015) [2]. The port's security, notably the storage of hazardous materials in 

container yards, becomes a source of worry. One of the significant problems of a 

terminal is how to store hazardous containers in the best safe place. Yachba et al. [7] 

discussed stacking hazardous containers problem in container terminal. The optimal 

location of the container in the terminal is very important for the company since this 

process reduces transportation expenses.  They proposed an optimization model for 

solving and optimizing the available storage space approach, as well as a method for 

resolving the problem of hazardous container placement. The goal of this work is to 

develop a computer tool that uses a Genetic Algorithm to identify the optimal locations 

for hazardous containers. Ambrosino et al. [8] considered to store hazardous containers 

according to the principles provided in the IMDG code's segregation table. The MBPP 

involves choosing how to stow a set of n containers, which are categorized into distinct 

classes depending on their size, type, weight level, and destinations, into a set of m 

available slots, which are spots on the deck or in the stow of designated bays of a 

containership. Stowing dangerous products requires extra constraints to be verified in 

each slot for the overall cargo's protection, under which dangerous goods are separated 

into different categories and must be stored away from incompatible ones. They showed 

how the IMDG Code-derived segregation laws affect the bins' available slots. To 

overcome the challenge of automating the compilation of a load schedule on a 

containership, Kamieniev et al. [9] proposed separating the process into two steps. The 

first computes the permitted container configuration based on structural constraints and 

hazardous cargo compatibility, while the second computes safety standards (stability, 

durability, etc.) They proposed a Boolean mathematical model of integer linear 
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programming that takes into consideration container structural features, vessel 

structural features, and IMDG Code regulations for determining hazardous goods 

(International Maritime Dangerous Cargoes Code). To validate the mathematical 

model, they chose a classic algorithm based on notions from the general method of 

branches and bounds. Marlair et al. [10] went into great detail on what the various 

categories and labeling of hazardous materials may contribute to the safety of storage 

warehouses, especially during the planning stage and when defining compatibility 

criteria or separation principles goods. To solve the hazardous container storage 

problem, Hamidou et al. [11] presented a hybrid architecture combining a Multi-Agent 

System with a Cellular Automaton. This is an improvement issue, because the purpose 

is to improve the layout of the container terminal, or the way risky containers are routed 

through the terminal. Simple optimization heuristic approaches were tested on a 

terminal with four hazardous container types. Zhu et al. [12] focused on the problem of 

unloading and stacking of incoming containers at container terminals and achieved a 

fair unloading sequence as well as the optimal yard stacking distribution. An integer 

programming model is created based on a proposed formulation to identify the optimal 

stacking distribution and unloading sequence, as well as to try to reduce the estimated 

number of rehandles. The model for small instances is solved by a commercial solver. 

As for large instances in real-world, a two-step search algorithm is designed, which 

includes an initial step to generate the feasible solution and a neighborhood search step 

to find the optimal solution. Since the pace of transporting dangerous containers has 

grown across the world, the risk of mishaps at seaports has increased, i.e. the explosion 

at Beirut's port. The decision was taken to develop the Bee Algorithm (BA) to tackle 

the Hazardous Container Stacking Problem in Tripoli-Lebanon Seaport, which is one 

of the most used meta-heuristics for solving optimization problems. 

3 Definition Problem 

Container terminals have suffered from many problems around the world, especially 

the storage of dangerous containers in container yards. One of the most recent accident 

occurred at the dangerous goods storage yard is the explosion in the port of Beirut 

(Lebanon). The accident was triggered by spontaneous combustion due to the heat 

accumulated in the ammonium nitrate stored in the warehouse, which led to the impact 

and ignition of other hazardous products stored nearby. The explosions caused massive 

and horrific consequences for humans, infrastructure and nearby suburbs, making it the 

third largest explosion in the world. 

However, containers of dangerous goods of different classes and non-dangerous 

goods are usually stored together in unequipped storage area in case of a serious 

accident. Any malfunction occurs in the storage area, particularly with hazardous 

materials containers, which can lead to unfavorable outcomes. All of these issues arise 

as a result of improper container organization, a failure to follow strict safety 

precautions, reduce risks that may arise, and separate them by a set distance according 

to the IMDG code to limit interactions between them. After a thorough assessment, a 

recent visit to the port of Tripoli- Lebanon, showed a severe breakdown in the 
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management of hazardous containers. To avoid any potentially catastrophic events, we 

propose a new mathematical model that focuses on the stacking of dangerous containers 

in a storage yard keeping a consistent spacing between all classes and adhering to the 

IMDG standard code to prohibit any interaction and secure the storage space. Avoid 

stacking containers holding flammable liquids in the storage area's corners to avoid any 

accident that might occur at any time. Our contribution is twofold. First, we propose a 

MIP model to optimize the total distance between hazardous container stacks with a set 

distance according to the IMDG table code and avoid stacking flammable liquids on 

the storage yard's corners and along the line parallel to the exit door. This work relies 

on communicating with port agents as well as monitoring actual port activity. 

Therefore, the mathematical model was chosen based on the suggestions of the port 

handling team in order to make the storage of hazardous container easier. Second, we 

develop an effective Bee algorithm (BA) to solve the hazardous container stacking 

problem while providing a high-quality solution. To our knowledge, bee algorithm was 

not previously applied to solve this type of problem in the storage yard. Due to the 

complexity of the problem of stacking dangerous containers, it is very important to 

choose a good meta-heuristics. 

The new meta-heuristics inspired by nature outperform old algorithms in solving 

many optimization problems, according to the results reported in [3, 4, 5, 6], which 

compares the old algorithms (genetic algorithm, ant colony and particle swarm 

algorithm) with the new ones (bee, firefly, and bat algorithm) inspired by nature. 

Considering the results of the algorithms comparison, we hypothesize that better results 

can be obtained by introducing this new nature-inspired meta-heuristic. Therefore, Bee 

Algorithm (BA) will be presented in this paper as potential solution for better 

optimization of logistic problems within a container terminal in Tripoli-Lebanon 

seaport. 

4 Mathematical Model 

One of the main problems at the terminal is how to optimally store containers. The 

goal of this work is to maximize the distance between hazardous containers by a fixed 

distance and to avoid storing flammable goods in critical places. Knowing that the 

proposed objectif function has equal weight in the first and second part, so to prioritize 

the second part, we multiply it by a constant number (weight). We propose a new 

mathematical model that represents reality and takes into account the majority of 

constraints imposed by port authorities. In our case, we assume that we have a large 

storage area where the imported hazardous containers are stacked on top of non-

hazardous containers pre-existing in a storage yard. 

 

A. Notations 

Indices 

 𝑐: Hazardous container 

 𝑠: Stack 

 𝑖: Location in a stack 
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Parameters concerning the Stacks and the Containers 

 𝑁𝑠: Number of Stacks 𝑠 such as 𝑆 = {1, … , 𝑁𝑠} 

 𝑓𝑠: Free spaces in a Stack 𝑠 such as 𝐹 = {1, … , 𝑓𝑠} 

 𝑑𝑠: Dimension of the Stack 𝑠 (20 TEU or 40 TEUs) 

 𝑑𝑑𝑠: Departure date of the container existing at top of the stack s at the beginning of 

storage operations. 

 𝑛𝑒𝑠: Stack to be placed on the edges of the storage yard or not  

 𝑁𝑐: Number of Containers 𝑐 such as 𝐶 = {1, … , 𝑁𝑐} 

 𝑑𝑐: Dimension of the hazardous container 𝑐 (20 TEU or 40 TEUs) 

 𝑑𝑑𝑐: Departure date of the hazardous container 𝑐 

 𝑐𝑎𝑐: Class to which the hazardous container 𝑐 belongs 

 𝑖𝑙: Hazardous container ℎ𝑐 contains liquid or not  

 𝑧𝑐′
𝑐 : The distance in meters between two containers belonging to classes of determined 

hazardous materials.  

 𝑓𝑐′
𝑐: The sum of spacing distances between two containers belonging to determined 

classes of hazardous materials.  

 𝑑: a fixed distance between hazardous containers (3 m, 10 m or 30 m according to 

IMDG code) 

B. Decision variable 

 

𝑥𝑠,𝑖
𝑐 = {

  1 if  the hazardous container 𝑐 is 
      assigned to the location 𝑖 of the

stack 𝑠
 0  otherwise

      

 

C. Formulation 

 

The objective function developed for this study is as follows: 

 

𝑀𝑎𝑥 (∑ ∑ 𝑓𝑐′
𝑐

𝑁𝑐

𝑐′=1

𝑁𝑐

𝑐=1

+ ∑ ∑ ∑ 𝑛𝑒𝑠 ∗ 𝑖𝑙𝑐  ∗ 𝑥𝑠,𝑖
𝑐

𝑓𝑠

𝑖=1

𝑁𝑠

𝑠=1

𝑁𝑐

𝑐=1

) 

(1) 

 

∑ ∑ 𝑥𝑠,𝑖
𝑐 = 1,

𝑓𝑠

𝑖=1

𝑁𝑠

𝑠=1

 ∀ 𝑐 ∈ 𝐶 

 

 

(2) 

∑ 𝑥𝑠,𝑖
𝑐 ≤ 1, ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐹

𝑁𝑐

𝑐=1

 

 

(3) 
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∑ ∑ 𝑥𝑠,𝑖
𝑐 = 0, ∀ 𝑐 ∈ 𝐶; 𝑑𝑐 ≠ 𝑑𝑠

𝑓𝑠

𝑖=1

𝑁𝑠

𝑠=1

 

 

(4) 

∑ 𝑥𝑠,𝑖
𝑐 ≥ ∑ 𝑥𝑠,𝑖+1

𝑐 , ∀ 𝑠 ∈ 𝑆

𝑁𝑐

𝑐=1

𝑁𝑐

𝑐=1

, 𝑖 ∈ 𝐹 − 1 

 

 

(5) 

∑ 𝑑𝑑𝑐

𝑁𝑐

𝑐=1

𝑥𝑠,𝑖
𝑐 ≥ ∑ 𝑑𝑑𝑐

𝑁𝑐

𝑐=1

𝑥𝑠,𝑖+1
𝑐 , ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐹 − 1 

 

 

(6) 

𝑧𝑐′
𝑐 = |∑ ∑ 𝑠  𝑥𝑠,𝑖

𝑐 − ∑ ∑  𝑠  𝑥𝑠,𝑖
𝑐′  

𝑓𝑠

𝑖=1

𝑁𝑠

𝑠=1

 

𝑓𝑠

𝑖=1

𝑁𝑠

𝑠=1

| 

 
∀ 𝑐 ∈ 𝐶; 𝑐′ = 𝑐 + 1, … , 𝐶  

 

 
(7) 

∑ ∑ 𝑓𝑐′
𝑐 =

𝑁𝑐

𝑐′=𝑐+1

𝑁𝑐

𝑐=1

𝑧𝑐′
𝑐  

 
∀ 𝑐, 𝑐′ ∈  𝐶   

 

 
(8) 

∑ ∑ 𝑓𝑐′
𝑐 >= 𝑑

𝑁𝑐

𝑐′=𝑐+1

𝑁𝑐

𝑐=1

√2 

 
∀ 𝑐, 𝑐′ ∈ 𝐶 

(9) 

  
𝑥𝑠,𝑖 

𝑐 ∊ {0,1} , ∀ 𝑐 ∊ 𝐶; 𝑠 ∊ 𝑆; 𝑖 ∊ 𝐹 (10) 

 

 

The objective function (1) of this model is to maximize the distance between 

hazardous containers to avoid any reactions, and to avoid containers containing 

inflammable liquid goods to be stacked in the corners of the storage yard to prevent any 

accident may occurs. Constraint (2) ensures that, each container is stored in one storage 

position. Constraint (3) ensures that multiple containers are not stored in the same 

location at the same time. Constraint (4) takes into consideration the differences 

between containers dimensions, requiring that containers with the same dimensions are 

assigned to the same stack.  Constraint (5) assures that empty intermediary positions 

between containers in the same stack are not permitted. Constraint (6) ensures that new 

containers are stored in each stack in decreasing order of their departure dates.  

Constraint (7)  𝑧𝑐′
𝑐 : Calculates the distance between two containers, c and c', belonging 

for determined hazardous classes. The distance is calculated in meters. Constraint (8) 
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saves the sum of spacing distances between two containers belonging for determined 

hazardous classes. Constraint (9) ensures that, the saved distance between containers 

belonging for determined hazardous classes must be greater than or equal to a 

predefined fixed distance d according to the IMDG code. Constraint (10) specifies the 

nature of each decision variables. 

5 Solving Methods 

The bee colony algorithm is a meta-heuristic algorithm which is applicable to 

various optimization problems. It was invented by Pham et al. in 2005. They were 

inspired by the behavior of natural bees when they seek flowers for the preparation of 

honey. Recent searches have provided insight to better understand the bee societies. 

Among these works, we can mention those of D.T. Pham et al. [13] and J.L. Gould et 

al. [14], who revealed that a colony of honey bees is able to travel long distances (more 

than 10 km) and in several directions to explore a large number of food sources.  

Every colony member has a determine role; some of them works as foragers. Before 

a harvest begins, only the scout bees are deployed to search for fields of flowers. When 

the scout bees make discoveries, they try to find better ones, before returning to their 

hive to inform the foragers. When scouts return to their hive, they deposit their harvest 

and go on the "dance floor" to perform the waggle dance. This mysterious dance is the 

bees' means of communication. This dance is based on the waggle run, which entails 

moving the body from side to side in order to produce a loud buzzing sound. To 

accomplish this dance, the bee first vibrates its wing muscles and then runs in a straight 

path to indicate the flowers' orientation. The waggle's frequency and range of buzzing 

reflect the source's quality, while the pace and duration of the dance are proportional to 

the source's distance.  The Bee Algorithm, which we propose for solving stacking 

hazardous container problem, involves six parameters: the maximum number of 

iterations (mic), the number of scout bees (nsb), the number of elite scout bees (nes), 

the number of best scout bees after elites (nbs), the number of foragers for elite scout 

bees (nfe), the number of foragers for the best scout bees (nfb). 

Irace is a software package that implements a number of automated configuration 

processes, for specifying the appropriate parameter values for a target algorithm. Irace 

is given a set of parameters, a set of instances to adjust the parameters for, and a set of 

Irace options to characterize the configuration situation as inputs. The use of Irace 

package [15] is to find right parameters’ values, instead of doing multiple manual tests 

in the bee algorithm. A targetRunner must be provided to run the BA with specific 

configurations parameters and instances and acts as an interface between BA and Irace, 

receives the instance and configuration as arguments and re-evaluates the 

implementation of this target algorithm. The algorithm can be summarized as follows. 

 

Algorithm: Bee Algorithm 

1 Generate random scouts (each scout  bee constructs a solution) 

2 Evaluate fitness (the objectif function for each solution) 

3 Initialize the number of iterations, i = 1 
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4 While i < mic do 

  4.a Select nes elite scouts (The top greater of objectif function) 

  4.b Select nbs sites for neighborhood solutions of point 

        4.a  based on search Radius around each containers. 

  4.c Generate new solutions by moving containers (left,  right, up and    

        down) into previous sites, nfe improve the elites scouts and evaluate  

        them 

  4.d Select nes the best scouts into each site 

  4.e Generate new random scouts, nfb improve the best scouts and evaluate  

        them 

  4.f  new population = scout from 4.e + scout from 4.d 

5 End While 

 

In the bee algorithm (BA), each site defines many solutions. The method of finding 

a site corresponds to the method of constructing solutions, since in our bee algorithm a 

site corresponds to many solutions of the container storage problem. To build a 

solution, we assign the containers one by one in random order. We randomly choose a 

container c that is not yet processed, then we randomly choose a stack s having the 

same size as c which respects the departure date in order to obtain the initial distribution 

(Line 1-3). Table 1 shows the best value for each parameter according to Irace. 

 

Table 1. Parameters’ values 

Number of iterations  mic = 1000 

Number of scout bees  nsb = 36 

Number of elite scouts nes = 8 

Number of best scouts 

after elites 

nbs = 10 

Number of foragers for 

elite scouts  

nfe = 26 

Number of foragers for 

the best scouts 

nfb = 18 

 

nes scouts and nbs best scouts are selected in step 4.a and 4.b and then are improved 

respectively by nfe and nfb forager bees in step 4.c and 4.e using a local search 

algorithm.  So, we get a new population constructed randomly by the remaining forager 

bees and the previous elite scout bee, before beginning a new iteration. Finally, the 

stopping criterion of the algorithm can be in two ways: either the maximum number of 

iterations when at each iteration a better solution is found than that obtained previously, 

or we stop the algorithm after a predetermined number of iterations if we do not find a 

better solution than the one obtained. 
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6 Computational Results 

Tests were carried out to estimate the effectiveness of these strategies. To simplify 

the model, five different types of containers are considered, namely Flammable liquids 

(C3), oxidizing substances and organic peroxides (C5), toxic and infectious substances 

(C6), radioactive material (C7), and corrosive substances (C8), with realistic separation 

rules. Table 2 shows the above classes with their class rules Ali, R. [16]. 

 

Table 2. Separation Rules 

Classes C3 C5 C6 C7 C8 

C3 X 30 m O 10 m 10 m 

C5 30 m X 3 m 10 m 10 m 

C6 O 3 m X O X 

C7 10 m 10 m O X 10 m 

C8 10 m 10 m O 10 m X 

 

We represent by "x m" the minimum separation in meters between two classes of 

container. X means no constraints. O means no separation is required since there are no 

interactions between classes; instead, the schedule should be reviewed for each port. 

BA described here has been implemented in Java. Experiments performed on Core 

i7 processor - 3610QM @ PC Win7 2.30 GHz with 6 GB RAM to test the performance 

of the mentioned algorithm. Due to the NP_hardness of the problem, we noticed that 

great instances cannot be solved by Gurobi because it requires a lot of computer 

memory. Thus, to do the comparisons, we used small and medium instances which were 

generated. Since that BA is the youngest Swarm Intelligence technique, it also gives a 

very encouraging solution compared to the results obtained by Gurobi. Numerical 

results for small and medium sized-instances are reported in Table 3 and 4. 

 

Table 3. Numerical Results for SMALL INSTANCES 

Inst Instance Gurobi BA Gap CPU Time 

No. 𝑵𝒔 𝒙 𝑵𝒄 𝒇𝑮𝒖𝒓𝒐𝒃𝒊  𝒇𝑩𝑨 𝒇𝑩𝑨  

𝑨𝒗𝒈 

Gap  

𝒇𝑮𝒖𝒓𝒐𝒃𝒊, 

𝒇𝑩𝑨 

Gap 

𝒇𝑩𝑨,
𝒇𝑩𝑨 𝑨𝒗𝒈 

Gu

rob

i (s) 

BA (s) 

    1  30 x 3    25    25  25 0.00% 0.00% < 1 < 1 

    2  30 x 4    37    35  35 5.40% 5.40% < 1 < 1 

    3  30 x 5    48    48  48 0.00% 0.00% < 1 < 1 

    4  36 x 3    28    28  28 0.00% 0.00% < 1 < 1 

    5  36 x 4    56    56  56 0.00% 0.00% < 1 < 1 

    6  36 x 5    83    83 82.76 0.00% 0.27% < 1 < 1 

    7  42 x 4    53    53  53 0.00% 0.00% < 1 < 1 

    8  42 x 5    62    62 61.3 0.00% 1.12% < 1 < 1 

    9  42 x 6   128   128 127.6 0.00% 0.31% < 1 < 1 

 Avg    0.60% 1.41%   
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Table 3 shows the comparative results executed, between Gurobi and BA, in less 

than 1 second for each small-sized instance. 𝑁𝑠 and 𝑁𝑐 designate the number of stack 

and the number of hazardous container respectively. 𝑓𝐺𝑢𝑟𝑜𝑏𝑖  represents the optimal 

value, while 𝑓𝐵𝐴 stands for the best value discovered by BA, and 𝑓𝐵𝐴 𝐴𝑣𝑔 means the 

average value found by BA after many experiments, as well as the gap. Therefore, the 

formula used to calculate the percentages of deviations is: 
 𝐺𝑎𝑝𝒇𝑮𝒖𝒓𝒐𝒃𝒊 ,𝒇𝑩𝑨  = [(𝑓𝐺𝑢𝑟𝑜𝑏𝑖   −  𝑓𝐵𝐴)/𝑓𝐺𝑢𝑟𝑜𝑏𝑖]  × 100 

 

Table 4. Numerical Results for MEDIUM INSTANCES 

Inst

No. 

Instanc

e 

Gur

obi 

BA 𝑮𝒂𝒑 CPU Time 

 𝑵𝒔 𝒙 𝑵𝒄 𝒇𝑮𝒖𝒓𝒐𝒃𝒊  𝒇𝑩𝑨 𝒇𝑩𝑨 𝑨𝒗𝒈 Gap  

𝒇𝑮𝒖𝒓𝒐𝒃𝒊, 

𝒇𝑩𝑨 

Gap 

𝒇𝑩𝑨,
𝒇𝑩𝑨 𝑨𝒗𝒈 

Gurobi 

(s) 

BA 

(s) 

1 48 x 5 111 111 110.4 0.00% 0.54% < 1 < 1 

2 48 x 6 162 162 160.9 0.00% 0.67% 1.45 1.19 

3 48 x 7 183 183 182.6 0.00% 0.21% 2.28 3.23 

4 48 x 8 293 293 288.6 0.00% 1.51% 11.88 4.33 

5 54 x 8 300 297 288.2 1.00% 2.93% 11.09 1.51 

6 54 x 9 290 290 288.4 0.00% 0.55% 10.66 7.59 

7 54 x 10 476 476 457.4 0.00% 3.90% 11.97 2.68 

8 54 x 11 598 592 574.6 1.00% 3.91% 52.86 12.5 

9 60 x 11 662 650 634.7 1.81% 4.12% 26.05 4.20 

10 60 x 12 743 743 722.3 0.00% 2.90% 44.6 10.8 

11 60 x 13 806 806 799.4 0.00% 0.81% 69.47 12.4 

12 60 x 14 1024 1024 992.2 0.00% 2.42% 76.29 14.4 

13 66 x 14 1103 1103 1099 0.00% 0.36% 229.91 20.0 

14 66 x 15 1318 1304 1283.2 1.06% 2.64% 75.58 19.2 

15 66 x 16 1105 1105 1089.3 0.00% 1.42% 289.87 8.55 

16 66 x 17 1666 1662 1652.3 0.24% 0.82% 1279.79 16.9 

17 72 x 14 1169 1169 1163.4 0.00% 0.47% 107.25 16.8 

18 72 x 15 1053 1032 1013.25 1.99% 3.77% 580.09 17.8 

19 72 x 16 1556 1556 1493.12 0.00% 4.04% 1048.48 10.8 

20 72 x 17 1671 1669 1593.82 0.11% 4.61% 1141.48 15.8 

Avg.    0.37%     2.00% 

 

Table 4 shows that the performance of the BA algorithm is highly encouraging 

compared to the results of Gurobi, especially since the execution time was not more 

than 20 seconds while the execution time of Gurobi increased with the instance size. 

Moreover,  in some cases, BA gave the same results as Gurobi in a very short 

execution time compared to the long execution time taken by Gurobi, which means that 

BA can solve large-sized instance within a reasonable time and give a near optimal 

solution that cannot be solved by Gurobi. So, the average percentage deviation for 

medium-sized instances is 0.37%. We may get the conclusion that the suggested BA is 

very effective in solving this problem. 
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7 Conclusion 

The problem of containers stacking is considered one of the most studied problems 

in port terminals, especially dangerous containers. In this paper, we propose a new 

model to solve the hazardous container stacking problem which aims to maximize the 

distance between hazardous containers to avoid any interaction and avoid placing 

containers with flammable liquids in critical locations.  Since that, the container 

stacking problem is an NP-Hard problem. Large instances are difficult to solve by 

Gurobi. BA is proposed to numerically solve the problem of storing dangerous 

containers. Numerical simulations carried out on twenty-nine cases have proven that 

this algorithm is effective in solving the problem of storing dangerous containers with 

an average deviation of 0.37% for the medium-sized instances. 

Since that a new model proposed, we suggest a new meta-heuristic using 

hybridization that is more effective in order to enhance the results and obtain an average 

deviation better than this produced by BA. 
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Abstract. The University Course Timetabling Problem is a combina-
torial optimisation problem in which feasible assignments of lectures are
sought. Weighted sums of violations of various constraints are used as a
quality measure, with lower scores (costs) being more desirable. In this
study, we develop a domain-specific many-objective optimiser, based on
constructive heuristics and NSGA-III, in which the violations of different
constraints are cast as separate objectives to be minimised concurrently.
We show that feasible solutions can be attained consistently in a first
phase and that a targeted objective can be fully optimised in a second
phase. A set of non-dominated solutions is returned, representing a well-
spread approximation to the Pareto front, from which a decision maker
could ultimately choose according to a posteriori preferences.

Keywords: Many-objective · Optimisation · Timetabling.

1 Introduction

The generalised University Course Timetabling Problem (UCTP) is the task
of generating a workable university timetable by assigning lectures to discrete
locations in time and space, subject to various constraints. It is a well studied
problem in combinatorial optimisation and known to be computationally hard
[19]. This study works with the standard curriculum-based formulation pro-
posed by the International Timetabling Competition (ITC) 2007 Track 3 under
the popular UD2 configuration [9] [4]. While it is noted in [3] that all (unique)
instances of this benchmark but 3 have been solved to optimality, this does not
diminish its usefulness. The formulation remains challenging for optimisers run-
ning on short-to-medium timeouts, while prior knowledge of the optimal values
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helps to contextualise results. The reader is directed to the sources above for
an in-depth description of the problem and constraints, which are modelled on
the real world timetabling problem of the University of Udine. In brief, feasible
timetable solutions cannot violate any of five given hard constraints h1 . . . h5.
These ensure that all lectures are assigned, pre-designated unavailable periods
are avoided, as are clashes between lectures. The quality of a feasible solution
is determined by violations of four soft constraints, s1 . . . s4, which relate to
room capacity, minimum working days, curriculum compactness and room con-
sistency respectively. We use the following notation to refer to entities in the
benchmark instances: L is the set of lectures {l1 . . . lγ}, di a day of the week, ti a
timeslot within a day, pi = t×d a period (or timeslot within a week), ri a room.
Adopting the terminology used in [16], a room/period pair is referred to as a
place. This study proposes a parameterless many-objective optimiser based on
the non-dominated sorting genetic algorithm III (NSGA-III) [6] and a construc-
tive heuristic. The motivation is to evolve a set of solutions that approximate the
Pareto front, thereby giving a decision maker a set of high quality timetables
to select from. For efficiency, our approach incorporates δ-evaluators, as sug-
gested by [12]. Phase 1 of the approach aims to find feasible starting solutions,
which are then used to initialise the genetic algorithm in Phase 2. Here, the 4
soft constraint violation scores are cast as separate objectives to be minimised
concurrently.

Section 2 provides some background work before Section 3 details the method-
ology and optimiser development. Section 4 describes the experiments and re-
sults. Sections 5 and 6 feature a discussion and conclusions respectively.

2 Related Work

While results have been published by many authors for the ITC2007 benchmark
(see the Benchmark Analysis section of [13] for an incomplete list), the majority
treat the problem as a single-objective minimisation, as prescribed by the orig-
inal competition rules. The original Track 3 competition included five finalists
[17], Z. Lu et al, [2] [10] and [5], from which the multi-phase constraint-based
solver of [17] was declared the winner. In the intervening years, the current best
known single-objective results have been achieved by [1] and [15]. The former em-
ployed a hybrid genetic algorithm with Tabu Search, whose movement through
the search space was determined by a sequence of large neighbourhood opera-
tors. The latter embedded an Adaptive Large Neighbourhood Search within a
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A Many-Objective Optimiser for Course Timetabling 3

Simulated Annealing framework. The best known results are reproduced here
for context.

It is noted in [14] that this single-objective approach predominates in educa-
tional scheduling generally, despite the existence of often numerous and conflict-
ing objectives. The authors consider a 3–objective professional training schedul-
ing problem with some similarities to the UCTP, comparing NSGA-II with
NSGA-III. The former was found to be superior on all metrics except speed.
However, the parameter values were tuned only for NSGA-II, and our problem
has a higher-dimensional objective space which may be tackled better by NSGA-
III. Other differences between the UCTP and the problem in [14] must be noted
too, such as its timescale (repeating week-long blocks rather than months or
years), requirement to assign all events, and lack of precedence constraints.

A more direct comparison may be made with [11], in which the many-
objective nature of the UCTP and ITC2007 benchmark was considered. A tra-
jectory search was carried out by selecting a small number of lectures and re-
assigning them. Various acceptance criteria were relied upon for the new evalu-
ations. In both of the two approaches proposed, decision maker preferences were
assumed a priori and implied by the cost function. This was defined as either
the standard weighted sum of violations or the Chebyshev distance to a refer-
ence point (the origin). Using the latter resulted in a more even spread of scores
across individual objectives.

To the best of our knowledge, there are as yet no published results for the
benchmark that attempt to approximate the Pareto set in the absence of decision
maker preferences. The following section outlines the development and reasoning
behind the different components of our system.

3 Methodology

Encoding: Our system is built in Matlab and incorporates modules from
the platEMO optimisation suite [20]. Its first task is re-encoding the problem
instances, by converting each problem from its original .ctt file format to a 2-D
indexed cell array data structure.

Solutions to the problem — the timetables themselves — must also be en-
coded. This is a design choice with serious implications for the efficacy of any
evolutionary algorithm used. The proposed solution encoding represents each
assignment using the 3-tuple: ⟨di, pi, ri⟩, where di and pi are the day and period
respectively and the element-wise length of a complete chromosome is 3 × |L|.
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Disadvantages of using a 3-tuple include the larger data structure and higher
time complexity involved, as well as the potential for epistatic effects caused by
interactions between elements within tuples. More favourably, the induced search
landscape grants connectivity between days, periods and rooms as individual en-
tities, allowing for the design of more nuanced and effective genetic operators.
Each element within a gene resonates with a particular soft constraint. For ex-
ample, perturbing di affects the number of unique days that course lectures are
held on, and therefore the violation score of s2. Compliance with h1 (all lectures
must be assigned) is also ensured by the 1:1 lecture:gene ratio.

Initialisation: The initialisation constitutes Phase 1 of a two-phase optimisa-
tion, with the aim being to produce a population of solutions that is as close
to fully feasible as practicable. To this end, two broad categories of construc-
tive heuristics have been proposed in the literature [18]. Static heuristics require
lectures to be sorted by some metric, where this fixed ordering then determines
the sequence of assignments. Dynamic heuristics involve recalculating the metric
values after each assignment, thus providing greater adaptive potential. In both
cases, the chosen metric is intended as a measure of ‘difficulty to assign’.

The static heuristics Largest Enrolment (LE) and Largest Degree (LD) and
the dynamic heuristic Saturation Degree (SD) were tested on the ITC2007 bench-
mark. LE relies on the number of enrolled students for its metric. Lectures with
a larger number of students take priority. LD, as described for the generic case
in [18], uses the number of potential clashes a lecture has with other lectures
resulting from commonality of students. Since explicit student sectioning is not
a feature of the ITC2007 benchmark, the metric is defined analogously as: The
sum total of lectures that have either a curriculum or a teacher in common with
the lecture being assessed. Priority is given to lectures with higher numbers of
potential clashes in this respect. The metric for SD is the number of available
feasible places, i.e. those that would not result in a hard constraint violation at
the point of assignment. The lecture with the lowest value at each decision point
is chosen for assignment. Across all heuristics, ties are broken at random.

Once a lecture has been chosen on the basis of its metric value, a place is ran-
domly selected from the set of feasible places currently available to that lecture.
If no feasible place exists, an infeasible place (excluding unavailable periods) is
chosen at random instead. A secondary, period-based heuristic is suggested in
[18] as an optional, more discriminatory, alternative to random sampling. Our
system neglects to include this with the following justification: Any infeasible
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for all 21 instances in the ITC2007 benchmark.

Fig. 1: Performance comparison of 3 constructive heuristics. Lines connect results
for common instances.

solutions that may have been constructed in Phase 1 are quickly bred out of the
population by the inherent hard constraint handling mechanism.The extra ex-
pense of a period-based heuristic was therefore found to outweigh the marginal
gains in feasibility rate.

In testing LE, LD and SD, 10 independent repetitions were carried out for
each problem instance. In each repetition, 100 timetable solutions were con-
structed, the number chosen as being a reasonable magnitude of population
size. The primary quality measures to consider are the proportion of solutions
that are feasible, and the relative speed of obtaining them. As with all experi-
ments in this study, the computation was performed on a 12-core Ryzen9 with
32GB RAM, base clock speed 3.8GHz. The wall clock speed shown here resulted
from using a single core and no parallelisation. Figure 1 shows the results for
the three heuristics over the 21 instances.

SD achieves superior feasibility rates for every instance, while being computa-
tionally dearer. At the scale of a population size of 100, this additional time cost
amounts to no more than a few seconds. More pertinently, all SD rates are 0.99
or higher, with the exception of the 3 instances comp02 (0.80), comp05 (0.11) and
comp19 (0.58). Across the infeasible solutions constructed for these 3 problems,
the mean distances to feasibility (given as a vector of the hard constraints (h2,
h3, h4, h5)) were (0.3, 3.1, 0.0, 0.2), (0.2, 18.6, 0.0, 0.2) and (0.5, 3.8, 0.0, 0.2)
respectively. These show that in the minority of cases where SD fails to achieve
a near-perfect feasibility rate, the expected violations of hard constraints in the
infeasible subset are nonetheless low. In particular, h4 is zero in all cases.
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Besides feasibility and speed, there may be other factors to consider when as-
sessing the quality of an initial population generated by a constructive heuristic.
The percentage of unique individuals in the sample is an example. In the afore-
mentioned tests, 100% was achieved across all instances and all heuristics on this
measure. Additionally, it may be worth considering some measure of dispersion
or dissimilarity between individuals. A suitably diverse starting population may
be important in terms of the exploratory power of the optimiser.

Algorithm: NSGA-III is a successful evolutionary algorithm that supports
many-objective optimisation with constraints [6]. It is an extension to the popu-
lar NSGA-II algorithm, which was originally conceived for lower-dimensional ob-
jective spaces [7]. As the ITC2007 problem has 4 objectives to optimise, NSGA-
III serves as an appropriate base for Phase 2 of our system.

Selection and constraint handling: Alongside the initialised population, the
SD heuristic implementation returns an array of feasibility flags, toggled during
construction. The property con holds the flag associated with each solution, with
a true value indicating at least one violation of a hard constraint. For the first
generation only, scores for the four soft constraint objectives are then calculated
in full. 2-way tournament selection is used to select a mating pool. Randomly
paired candidate solutions are first compared on their con property, with the
lower value indicating the winner. Feasible solutions are thereby given priority.
Should the con values be equal, the sum of the objective scores is used as a
tie-breaking fitness measure.

Genetic operators: For a real-valued encoding, NSGA-III traditionally uses
simulated binary crossover (SBX) and polynomial mutation as its genetic op-
erators. For this discrete problem, adaptations were first made to both genetic
operators to ensure the preservation of integrality in decision space. Further in-
vestigation determined that, with no meaningful ordering apparent for entities
such as days or periods, traditional polynomial mutation is not necessarily well
suited for this problem domain. Similarly, standard SBX carries the risk of de-
generating timetables by recombining promising subsets in an injudicious way,
thereby worsening the overall solution quality. In complex, combinatorial prob-
lems such as timetabling, a successful crossover operator requires domain-specific
knowledge and can be computationally expensive. The proposed approach there-
fore dispenses with crossover entirely and is instead wholly reliant on a guided
mutator. In developing this mutator, the following test was conducted:
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Fig. 2: A histogram of the percentage of assigned lectures with at least one
feasible move available, for comp12. The sample set is 1000 feasible solutions
constructed by SD.

1000 feasible solutions were constructed using SD. For each assigned lecture
of each solution, a check was made on the number of places it could be re-assigned
to without violating the overall solution feasibility. For some assignments, there
were no feasibility-preserving moves available. The histogram in Figure 2 shows
an example (for comp12) of the distribution of percentages of assigned lectures,
over the 1000 solution sample, with at least one such available move.

For all problems tested, the distributions demonstrate that the expected
chance of an available feasible move is generally high. The optimiser can be
guided, therefore, by imbuing the initial mutator, known as MuPF, with a prefer-
ence for feasible moves where they exist. After randomly selecting one lecture,
li, to be mutated, another random selection is made from the set of feasible
moves available to that lecture. If this set is found to be empty, MuPF defaults
the assignment to any random place.

Using this mutator, a test run was performed on comp01 with a population
size of 364 over 550 generations. Over the course of this run, the minimum values
of objectives (s1, s2, s3, s4) improved from (1599, 15, 88, 66) to (537, 0, 6, 28)
respectively. Further tests emphasised the large relative contribution that s1
often makes to a scalarised objective score. An enhancement to the mutator, in
which sufficient room capacity is considered, was proposed specifically to target
this objective. Algorithm 1 outlines MuPFPR.

An initial indicative plot comparing MuPF and MuPFPR is given in Figure 3. A
run on comp01 was carried out with a function evaluation budget of 2 million.
The extra room-related guidance provided by MuPFPR, shown as a black trace,
helped drive the convergence rate for s1 objective in the top left tile, at no
detriment to the remaining objectives.
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Algorithm 1: Preference for feasibility, preference for room (MuPFPR)
mutation operator
Inputs: One starting solution
Output: One mutated solution
Randomly select a lecture, li, to mutate
Identify the set of places, feasMoves(li), to which li can be re-assigned
without violating the feasibility of the solution

if feasMoves(li) = ∅ then
Re-assign li to a new randomly chosen place in any room with
sufficiently high capacity and excluding unavailable periods

else
if feasMoves(li) ∩ sufficientRooms(li) = ∅ then

Re-assign lecture i to a place randomly chosen from
feasMoves(li)

else
Re-assign li to a place randomly chosen from the given
non-empty intersection

Fig. 3: A comparison of mutator MuPF (grey) and MuPFPR (black) for a single rep
of comp01 with 2 million function evaluations. Traces shown are the min, mean
and max objective scores over each generation.

Incorporated into the mutation process is an implicit feasibility checker.
A violation flag, conMutation, is toggled if and only if feasMoves(i) = ∅.
The returned con property for that child is generally given by (conParent ∨
conMutation) — except in the case when the parent solution is infeasible and
the mutation is feasible. Here, the feasibility of the child is unknown and a full
evaluation of the hard constraints must be called. The rarity of this outcome en-
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δ-evaluators (solid line) vs. full (dashed line), for a small (comp01), medium
(comp02) and large (comp07) sized problem and a variable number of mutations.

sures that, in practise, the hard constraint evaluators seldom need to be executed
at all — an example of a time-saving partial evaluation. The following section
details how δ-evaluations are used to make similar savings when calculating the
soft constraint objectives.

δ-evaluations: The process by which a δ-evaluation negates the need for a full
evaluation on the soft constraint objectives is as follows: The ID of the lecture
to be perturbed is recorded. The value contributed to the parent objective score
by the assignment of this lecture is calculated. This value is subtracted from
the objective score of that parent, which is known a priori from the previous
generation. Lastly, the contribution of the new assignment in the child solution
is added. Objective s1 is best suited for a fast δ implementation, due to the
fact that the value contributed by an individual lecture is independent of those
from other lectures. For the remainder of the objectives, interactions between the
lecture being perturbed and various other lectures must also be accounted for.
Specifically, those from the same course (for s2 and s4), or those with a common
curriculum (s3). Combined over 4 objectives, the δ-evaluators nonetheless offer a
sizeable time saving over their full counterparts, as illustrated in Figure 4. While
the run time of a full evaluator scales with the number of lectures, the δ run
time scales with the number of mutations — due to the resulting combinatorial
interactions. Under a single lecture mutation, the δ-evaluator gives the largest
time savings, by multiples of 6.3, 10.7 and 13.2 for the respective problems shown.

Non-dominated sorting: NSGA-III relies initially on the dominance relation
on objective scores to sort a concatenated parent/offspring population into non-
dominated fronts. The efficient non-dominated sort with sequential search (ENS-
SS) is used [21]. The hard constraint handling procedure mandates that any
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solution with a con flag value true is automatically dominated by all feasible
solutions, regardless of the quality of its objective vector. The only way, therefore,
in which such a solution can be admitted into the next generation is if the
cardinality of the feasible solution set is less than the active population size.
This in turn implies the following about Phase 2: If a given generation is fully
feasible, all subsequent generations are also fully feasible. To promote diversity,
NSGA-III also associates solutions with rays passing through a set of popSize

uniformly distributed points on the 4-dimensional unit hyperplane. The normal-
boundary intersection method with two layers is used to obtain these coordinates.
popSize is a geometrically constrained approximation to the desired, user-input
population size, setPopSize.

4 Experimental Design & Results

Each run of the optimiser was allocated to a single core of the Ryzen9 machine,
as per the original ITC2007 stipulation. Parallelisation was used only across
independent runs. In the absence of the original CPU benchmarking program,
termination was after 600 seconds wall clock time, which was the limit intended
by the competition, and setPopSize = 100. For each problem in a subset of 10
tested, 30 repetitions were carried out by varying the random seed. An external
passive archive, implementing the ND-Tree structure [3] [8], was constructed
using the complete search history. The purpose was to update and store the
set of non-dominated solutions found over the course of the search. The results
are reported in terms of the following performance metrics: The best scalarised
score found (using the original ITC2007 weighted penalty scheme). The size, at
termination, of unique solutions in the non-dominated archive (both in decision
and objective space, as the mapping is many-to-one). A Monte Carlo estimate of
the hypervolume indicator, for which theoretical upper bounds on the maximum
objective scores were used as the reference point coordinates.

Table 1 shows our results and statistics, alongside results from [11], [1] and
[15]. Figure 5 illustrates the spread of non-dominated solutions achieved by a
single rep in 3-D objective space, for 3 problems in which the s1 dimension has
successfully been collapsed to zero.
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Table 1: Results from 30 independent reps. bs is the best scalarised solution score
found over all reps, while bs(s1, s2, s3, s4) gives the objective scores that make
it up (averaged over the unique objective vectors whose sum is bs). A is the final
archive of non-dominated solutions, where sets of unique vectors in objective or
decision space are distinguished by subscripts o and d respectively. Cardinalities
for both are given as median values. hv(Ao) is the (mean) hypervolume of Ao,
while HVref is the reference point used. The best scalarised results from the two
approaches in [11] are given as G1 (Threshold Accepting with 1% threshold) and
G2 (reference point based). Finally, BK denotes the best known single-objective
scores to date within the time limit, achieved by either [1]* or [15]† or both.

Proposed approach Others
Instance bs bs(s1, s2, s3, s4) |Ao| |Ad| hv(A) HVref G1 G2 BK
comp01 11 (4, 0, 4, 3) 11 7492 0.959 (3606, 360, 294, 124) 5 10 5*†
comp03 162 (0, 52.5, 92, 17.5) 17 850 0.831 (11160, 720, 1536, 179) 115 154 68†
comp04 92 (0, 6.7, 65.3, 20) 17 482 0.853 (8151, 665, 1130, 207) 67 90 35*†
comp06 167 (0, 15, 104, 48) 16 233 0.777 (10632, 990, 1668, 253) 94 159 30*
comp08 108 (0, 0, 74, 34) 14 301 0.810 (7711, 700, 1166, 238) 75 120 37*
comp09 158 (0, 40, 94, 24) 24 623 0.821 (9269, 720, 1492, 203) 153 197 100†
comp11 0 (0, 0, 0, 0) 2 45453 0.981 (3196, 335, 500, 103) 0 0 0*†
comp13 131 (0, 30, 84, 17) 20 390 0.832 (10668, 670, 1292, 226) 101 133 59*†
comp14 125 (0, 20, 90, 15) 19 1289 0.866 (7138, 830, 1392, 190) 88 120 51†
comp18 116 (0, 30, 78, 8) 45 1373 0.884 (2638, 455, 954, 91) n/a n/a 64†

Fig. 5: Non-dominated solution sets in (s2,s3,s4)-space, found during single runs
for 3 problems in which the fourth objective, s1, was optimised to zero.

5 Discussion

The strategy for speeding up (or by-passing) calculation of objective scores was
successful in yielding inexpensive evaluations. However, this only partially mit-
igated against the cost of non-dominated sort. The algorithm unsurprisingly
had a lower execution rate for function calls than many single-objective solvers.
Comparing its performance on an equal function evaluation budget rather than
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a time budget would be enlightening, as the gradients in Figure 3 suggest further
gains are available. Despite this, scalarised results are seen to approach those of
single-objective solvers on some problems which is encouraging — comp11 in par-
ticular was solved to optimality. With regard to the individual objective scores,
the targeted operator MuPFPR was capable of rapidly optimising s1 to zero across
the board (except for comp01 where the value of s1 in the optimal solution is
known to be 4). These gains were not made at the expense of other objectives
however, which showed improvement without exception during the runs. This
suggests that additional bespoke operators, targeted at these objectives, may be
a promising next step in striving to closer approximate the true Pareto front. A
comparison with the reference point based approach of [11] (G2), shows compet-
itive or improved scalarised scores, although this claim is weakened by the CPU
benchmarking discrepancy. A major point of differentiation though is that our
approach returns a population per run, rather than a single solution, in a compa-
rable timescale. The approach appears relatively problem-agnostic, in contrast
to [12] whose results show high variance across problems. Most importantly, it
works on the assumption of a posteriori decision maker preferences. Different
areas and extremes of the Pareto front are therefore explored simultaneously
and a well-spread set of non-dominated solutions can be provided, as shown in
Figure 5. The hypervolume indicator values in Table 1 also evidence this, with all
10 problems, bar comp06, achieving a mean of 0.82 or higher. As lower absolute
objective scores are achieved, the cardinality |Ao| naturally tends to decrease,
as in comp01 (median 11) and comp11 (2). This can be explained by the prox-
imity of the front to the origin and consequent sparsity of distinct points on the
4-D integer lattice. The observation |Ad| ≫ |Ao| also interestingly highlights the
extent to which multiple designs map to a common objective point.

6 Conclusions and Further Work

In a departure from the single-objective treatment of the ITC2007 timetabling
problem, we propose a two-phase, many-objective optimiser based on NSGA-III
in which hard constraints are handled procedurally and soft constraints are cast
as objectives. It is effectively paramaterless, save for setPopSize and termina-
tion criteria which are pragmatic user choices. The time cost associated with
many-objective algorithms is mitigated by prudent use of δ-evaluators. A simple
mutation operator reduces the otherwise large violation contributions caused by
over-filling rooms (constraint s1) to zero wherever possible. Selection and non-
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dominated sorting ensure convergence of the other objectives as well as feasibility
of solutions, while a quick start is guaranteed by the SD constructive heuristic.

Further work will focus on increasing the convergence speed of the remaining
3 objectives by widening the pool of targeted operators. If the mutator is consid-
ered as a neighbourhood, a more systematic exploration may be possible. Figure
2 gives an intuition about the size of such a neighbourhood. An adaptive element
may be added to Phase 2 to select from such a pool based on the state of the
current population or trajectory of the evolution. Alternatively, objectives that
reach optimality may be aggregated with con so that any solutions sub-optimal
in this objective will thereafter be automatically dominated. Further analysis
will also help characterise the trade-offs between the objectives. By their defi-
nitions, s1/s4 and s2/s3 represent the two pairs with the greatest potential to
conflict. The large cardinalities of the decision space solution sets suggests that
genotype diversity could also play a useful role in the selection process.
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Abstract. Many machine learning algorithms require the use of good
quality experimental designs to maximise the information available to
the model. Various methods to create experimental designs exist, but
the solutions can be sub-optimal or computationally inefficient. Multi-
objective evolutionary algorithms (MOEAs), with their advantages of
being able to solve a variety of problems, are a good method of creating
designs. However, with such a variety of MOEAs available, it is impor-
tant to know which MOEA performs best at optimising experimental
designs. In this paper, we formulate experimental design creation as a
multi-objective optimisation problem. We compare the performance of
different MOEAs on a variety of experimental design optimisation prob-
lems, including a real-world case study. Our results show that NSGA-II
can often perform better than NSGA-III in many-objective optimisation
problems; RVEA performs very well; results suggest that using more ob-
jectives can create better quality designs. This knowledge allows us to
make more informed decisions about how to use MOEAs when creating
metamodels.

Keywords: Pareto optimality · Metamodelling · Evolutionary Compu-
tation

1 Introduction

Computer simulations are widely used in many scientific fields to understand
systems that are complex or difficult to measure in the real world. Problems
arise when simulations become computationally expensive. If one wants to un-
derstand the landscape, a small set of samples can be used to construct a meta-
model. A metamodel is a regression model representative of a simulator. This
allows the prediction of unsimulated areas of the landscape without expensive
simulator runs. The problem of metamodeling and experimental designs is to
determine what values to run the true simulator so that the metamodel regres-
sion is as accurate as possible [8]. Intuitively, it is best to uniformly spread the
sample points across the domain, to maximise the information available for the
regression metamodel. Uniform spread, or space filling, is the main concern of
creating experimental designs; how do we position the sample points used for
the metamodel across the domain space?
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There are various ways to create experimental designs, the most simple
method is random sampling/Monte Carlo sampling. This is very limited in its
use for metamodeling, as many samples are required to fill space effectively [8].
Latin hypercube sampling (LHS) improves on random sampling by considering
a one-dimensional projection property for all sample points. LHS, when com-
bined with space filling criteria, can create effective space filling designs; how-
ever, maintaining the one-dimensional projection property is difficult, as it is
a strict constraint. Methods to obtain optimised LHS are computationally ex-
pensive and for some design parameters become infeasible [15]. Single objective
methods return single solutions; no alternatives are given.

By employing multi-objective optimisation (MOO) in the creation of design
of experiments (DOE), we can overcome these issues and give the decision maker
(DM) greater control over the optimisation process. Multiple desirable proper-
ties of experimental designs can be chosen by the DM and constraints upon
solutions can be applied [6]. For example, we could set a constraint that requires
solutions to be Latin hypercubes/maintain single-dimensional projection. Alter-
natively, the single dimension projection ability of a design can be measured as
an objective that is optimised in conjunction with other objectives; this may not
give exact LHSs, but it can produce families of designs close to pure LHSs in a
fraction of the time.

In addition to speed and customisability, MOO facilitates the creation of a
set of optimal solutions, which provides many alternatives with different evalu-
ation values [6]; the DM can select a design that fits his/her requirements. For
experimental designs specifically, the presence of alternatives is especially pow-
erful due to the multi-modality of the problem. MOO of DoE is a multi-modal
multi-objective optimisation problem (MMOP). As such, experimental designs
with similar evaluation values can have vastly different sample point locations.
This gives the DM an even greater choice [18]. If, for example, a chosen design
produces a substandard metamodel, the decision maker has not to change his
requirements; s(he) can select another experimental design that is similar within
the objective space and distant in the solution space [18]. This new design still
meets the decision makers requirements however may produce a far better meta-
model.

With the advantages of customisability and easy access to alternatives, the
use of MOO for the creation of experimental designs is considered appropriate
and should be explored. MOO is frequently done with the use of multi-objective
evolutionary algorithms (MOEAs); these algorithms have various strengths and
weaknesses. MOEAs can solve many types of problems; they can solve non-
convex problems and without derivatives [6]. They are a good choice for solving
the problem of design of experiments; however, they must be prepared to over-
come the unique problems presented by multi-objective design of experiments.
These problems include:

1. Large Gene Count: Due to the encoding methods, each potential solution in
a modest DOE optimisation problem can contain hundreds of genes. As the
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number of genes becomes very large the search space increases and algorithm
performance deteriorates [19].

2. Multi-Modality: Although multi-modality can be advantageous, it comes
with some drawbacks. For multi-modal problems, diversity management sub-
routines in MOEAs can inadvertently reduce diversity in the population and
therefore the solution set [18].

3. Many-Objectives: A multi-objective problem with more than three objec-
tives is called a many-objective problem. When the number of objectives
increases, the effect of evolutionary operators on the population deteriorates
and algorithms can struggle to converge on the optimum [12]. In our experi-
ments, we are executing multi and many objective problems; the algorithms
must be equipped to handle both.

To understand how to best use MOO for the creation of experimental de-
signs, we will evaluate the performance of different MOEAs in their creation.
By comparing performance, we can in the future select the correct algorithms to
overcome the challenges of MOO of DOE, and fully reap its benefits. Further-
more, research into how the number of objectives affects design quality has not
been explored. By performing experiments on different numbers of objectives,
we can understand how adding more objectives affects the quality of the designs.

The rest of the article is structured as follows. In Section 2, we provide
a background of MOO and DOE. In Section 3, we formulate the DOE as a
multi-objective optimisation problem. In Sections 4 and 5, we provide results for
several benchmark and real-world problems by using different MOEAs. Finally,
we conclude and mention the future research directions in Section 6.

2 Background

Criteria for space filling are widely researched in the experimental design field.
They can be defined via distance based criteria, for example, minimax, max-
imin [13], potential energy [2]; or uniformity based criteria, where deviation
from a uniform distribution is measured. More obscure criteria include corre-
lation based and collapsibility criteria. Often, a single criterion is selected to
optimise the sample points in an experimental design. We can remove this con-
sideration and consider multiple objectives to create designs via multi-objective
optimisation. We consider MOPs of the following form :

minimize f = {f1(x), . . . , fk(x)} subject to x ∈ S, (1)

with k (≥ 2) objective functions and the feasible set S is a subset of the decision
space ℜD. A solution x1 dominates another solution x2 if fi(x

1) ≤ fi(x
2) for all

i = 1, . . . , k and fi(x
1) < fi(x

2) for at least one i = 1, . . . , k. If a solution is not
dominated by any of the possible solutions, it is called non-dominated. The set
of such solutions is called the Pareto set. The aim of solving MOP is to find an
approximated set of Pareto optimal solutions.

There are various methods of multi-objective optimisation: weighted sum,
lexicographic ordering, and multi-objective evolutionary algorithms. All have
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been used to optimise experimental designs with promising results. In [14], multi-
objective designs were created by combining the maximin and linear correlation
criteria. Their designs were good, however, their use of weighted sums makes
their results weaker, as weighted sum requires strong consideration of user pref-
erence and leaves results open to human error. Moreover, the weighted sum
approach is not suitable for non-convex problems [16]. Abdellatif et al. [1] use
lexicographical ordering to create hybrid Latin hypercube designs that optimise
both the maximin criterion and the orthogonality criterion. Although they con-
sidered the proper order of optimisation, lexicographical ordering has weaknesses
concerning the limitation of the search space. Gunpinar [9] used a multi-objective
approach to create a genetic algorithm selection technique for computer-assisted
design. Li et al. [15] created designs using the potential energy and maximin
criteria to optimise designs via a modified NSGA-III. They did not consider the
use of other algorithms. We will build upon their work by investigating which
MOEAs are best for optimising experimental designs.

MOEAs attempt to find a evenly distributed approximation of the Pareto-
optimal set of solutions. They use evolutionary operators like crossover, muta-
tion, and selection to converge on a global optimum. In lower dimensional spaces
where the Pareto set is one or two dimensions finding the optimal set is simple.
Algorithms like NSGA-II [6] can perform very well at these tasks; however, as
the number of objectives increases, selection pressure falls and convergence upon
the optimum is weakened [12].

Work has been done to combine decomposition with Pareto-based approaches.
NSGA-III uses predefined reference points. Reference points help select solu-
tions from the non-dominated set, maintain diversity, and enhance convergence.
These reference points must be chosen by the user although typically are uni-
formly distributed. NSGA-III selects members that are non-dominated and close
to the given reference points. Proposed by Deb and Jain [7], they showed that
NSGA-III produces good results for problems of up to fifteen objectives.

RVEA [4] also uses reference points to guide selection. Like NSGA-III, RVEA
partitions the objective space, and selection is performed individually inside each
partition. This helps balance diversity and convergence. The authors of RVEA
showed that RVEA is a competitive algorithm when compared to NSGA-III; in
some test problems it outperformed.

Indicator-based approaches, like Indicator Based EA (IBEA) [20], don’t use
dominance as selection measure but a user specified indicator. Indicators in-
clude hypervolume or eta indicators. Therefore, indicator-based approaches do
not suffer the issues of dominance-based evolutionary algorithms. They can be
prohibitively expensive when the number of objectives is too large [4]. NSGA-
II, NSGA-III, RVEA, and IBEA are the algorithms that we shall use for the
construction of designs. These algorithms have been chosen because they are
commonly used and cover various paradigms of algorithm design.
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3 Multi-objective Design of Experiments

In this section, we define the objective functions and formulate the design of
experiment as a multi-objective optimisation problem.

3.1 Objective functions

We have chosen four criteria that are appropriate for a design. All four are to
be minimised. Having a selection of four different criteria allows evaluation of
performance for different numbers of objectives. We can test the performance of
each algorithm by constructing designs via two, three, and four objectives.

Potential Energy (AE) A popular space filling criterion, the Audze-Eiglais
criterion [2] (also known as the potential energy criterion) fills space by treating
each design point as a charged particle that repels all other particles. The total
potential energy between the particles is used to evaluate their space filling.
A design with low potential energy suggests the particles are spread uniformly
across the domain. We chose this criterion for its excellent space filling properties.
The potential energy criterion, for a design XN , where N is the total number of
samples, is denoted as:

PE(XN ) =

N−1∑

n=1

N∑

j=n+1

1

dis(xn,xj)
,

where dis(xn,xj) is the Euclidean distance between xn and xj .

L2 Derived by Hickernell [10], the centred L2 discrepancy criterion assesses
space filling by quantifying the distance between the continuous distribution
of the design points and a discrete uniform distribution. We chose this criterion
because it is also an effective space filling criterion that optimises from a different
perspective to potential energy. For designXD

N ; where N is the number of sample
points, D is the number of dimensions, and xn

d is the nth sample in dimension
d, the metric can be denoted as:

L2(X
D
N ) =

(
13

12

)D

− 2

N

N∑

n=1

D∏

d=1

(
1 +

1

2
|xn

d − 0.5| − 1

2
|xn

d − 0.5|2
)

+
1

N2

N∑

j,n=1,j ̸=n

D∏

d=1

(
1 +

1

2
|xn

d − 0.5|+ 1

2

∣∣∣xj
d − 0.5

∣∣∣− 1

2

∣∣∣xn
d − xj

d

∣∣∣
)

Collapsibility (Coll) The non-collapsibility of a Latin hypercube is advan-
tageous for an experimental design. When two points do not have a mutual
coordinate they are said to be non-collapsible. A design is non-collapsible when
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no two points lie along the same one-dimensional slice; no two points share the
same coordinate. Having non-collapsible points can save resources and provide
more information per simulation run. Suppose that two points are collapsible
along a single coordinate/variable; that is, they have the same or very similar
value. If another variable/coordinate value has very little impact on the output
of the simulator, those two design points will give similar outputs with no fur-
ther information gained. Therefore, minimising the collapsibility of a design is
important for its effectiveness; we have chosen to use a collapsibility criterion
for the optimisation.

Collapsibility does not guarantee an effective space filling design; using this
criterion in conjunction with other space filling criteria will allow its advantages
to be fully utilised. Using the formula below can only be done using a multi-
objective technique; by itself it is useless for space filling. Bates et al [3] discussed
this penalisation method that allows me to assess collapsibility.

We can assess collapsibility by evaluating each one dimensional projection of
the sample points. If we take the dth-coordinate of all sample points in a design
and sort them from smallest to largest we get the set Md = {md1,md2...mdn}.
We can then create a set of equally spaced intervals that each point in Md should
lie appropriately within, L = {l1...lx}; where x = N + 1, l1 is minimum of the
sample space, and lx is the maximum of the sample space. For a design to be a
true Latin hypercube, each mdn should lie within the interval ln ≤ mdn ≤ ln+1.
We check this equality across every mdn, if any conflicts occur, we penalise the
design. For a design, we sum the number of conflicts across all dimensions. A
design with no conflicts is a Latin hypercube and the function would return zero.
The function treats collapsibility as a minimisation problem. For a design XD

N

we can write the function as:

Coll(XD
N ) =

D∑

d=1

N∑

n=1

A(Mdn), A(M) =

{
0, if ln ≤ M ≤ ln+1

1, otherwise

Correlation (Corr) A design that has a strong correlation between its points
will have areas of the domain space unexplored, which is undesirable. However,
a design that has a low correlation is not guaranteed to be space filling. Using
the correlation criterion in conjunction with space filling criteria ensures that
the design is non-correlated and also space filling. By including this criterion the
quality of the designs should increase. In our work we shall be using the Pearson
coefficient; we try to minimise the largest pairwise correlation found across the
design points. If RX is the Pearson correlation matrix of each point in design
X and I is an identity matrix of the same size, we can evaluate correlation in a
single value denoted as:

Corr(X) = max |RX − I|

3.2 Encoding

For evolutionary algorithms encoding must be considered. If we consider an
experimental design to be a system of N coordinates in an D dimensional hy-
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percube we can represent a design as a N by D array. Most MOEAs do not
support manipulating multi-dimensional arrays within their evolutionary opera-
tors; therefore, conversion is required. When we perform evolutionary operations
upon each individual we flatten the multidimensional array into a single one di-
mensional array. When we evaluate the performance of each solution/design we
reshape the one dimensional array into its true N by D array.

Each solution is represented as an array of length ND, where every compo-
nent of each coordinate is a gene that can be operated against. Each gene is a
real number between 0 and 1; this is done for ease of optimisation. For example,
selecting 10 samples for a 5 dimensional simulator will grant me 50 genes per
potential solution. The magnitude of samples can increase quite dramatically,
for 200 samples in 5 dimensions the number of genes is 1000 per solution.

Bates et al [3] compared our encoding solution to an alternative, where each
sample point is represented as a single node number in the design space. The
design contains a finite number of nodes each represented by an integer. A design
can be represented by a sequence of integers each representing the nodes at which
each sample is placed. We will not be using this encoding system as Bates et al
explains; the coordinates based encoding system requires less bits and therefore
has a lower risk of encountering numerical errors.

4 Numerical Experiments

In this section, we compare different MOEAs with different combinations of
objectives defined in the previous section.

4.1 Problem Specifications and mumerical settings

To test the limits of the MOEAs, several experiments with different parameters
shall be executed - each building on the previous. The table below describes the
specifications of each problem.

Experiment Samples Dimensions Genes Objectives
DOE 5.2 25 5 125 AE, Coll
DOE 5.3 25 5 125 AE, Coll, L2
DOE 5.4 25 5 125 AE, Coll, L2, Corr
DOE 10.2 50 10 500 AE, Coll
DOE 10.3 50 10 500 AE, Coll, L2
DOE 10.4 50 10 500 AE, Coll, L2, Corr
DOE 25.2 40 25 1000 AE, Coll
DOE 25.3 40 25 1000 AE, Coll, L2
DOE 25.4 40 25 1000 AE, Coll, L2, Corr

The experiment names are based on the parameters; a suffix of “5.2” refers to a
5 dimensional design optimised by 2 objectives.
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Hypervolume shall be used as a performance measure upon the algorithms
NSGA-II, NSGA-III, IBEA, RVEA. The reference point is constant across prob-
lems with a mutual number of objectives; for two objectives it is 1500, 1000; for
three objectives it is 1500, 1000, 100; for four objectives it is 1500, 1000, 100, 2.
RVEA parameters include an adaptation frequency of 0.2 and a rate of change
of penalty of 2. IBEA used a kappa value of 0.05. Simulated binary crossover
and polynomial mutation were used, both with a distribution index of 20 and a
probability of 1. Initial population size of 200; the initial population is identical
across problems with mutual levels of dimensionality. Termination occurs after
100,000 function evaluations.

Fig. 1: PlatEMO hyper-volume performance across all nine DoE problems. The
legend is the same for all subplots.

4.2 Results and discussion

The results for hypervolume convergence can be seen in Figure 1. NSGA-III is
designed for many objective problems therefore it is expected to perform bet-
ter than NSGA-II in 4 objectives [7], however the results suggest otherwise.
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Ishibuchi et al. [11] showed research that suggests that the choice of problem
has a larger effect on performance comparisons than the number of objectives.
In their algorithm evaluation of a 500 item knapsack problem they showed that
NSGA-II performs consistently better up to 10 objectives. DOE problems and
knapsack problems are similar in that each individual is represented by a large
number of genes. The performance of NSGA-II over NSGA-III remains constant
across all hypervolume convergence graphs in figure 1; the large number of genes
in DoE problems could be a factor in explaining the results. Ishibushi et al. also
showed that NSGA-II performs better than NSGA-III when the Pareto front is
very large compared to the spread of the initial solutions. For these problems,
strong diversification is needed [11]. Figure 2 shows the initial population and
the final population for NSGA-II and NSGA-III, we can see that the difference
in spread between the final and initial populations is large and that NSGA-II
produces a more diverse final population. NSGA-II’s crowding distance diver-
sity measure seems to perform better on this class of problem, as it does with
knapsack problems.
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Fig. 2: DOE 25.4: NSGA-II and, NSGA-III final and initial population

As both algorithms had the same initial population, it would be worth con-
firming performance comparisons by re-running the experiment with a different
initial population. Different methods of initial population generation should be
considered also; in these experiments initial populations were random. Perhaps
an initial population of Latin hypercubes would produce better results as the
collapsibility criterion is attempting to achieve Latin hypercube qualities. A non-
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optimal Latin hypercube initial population would help the MOEAs produce good
designs with less work.

RVEA performed better than other algorithms for problems with more than
two objectives. Cheng et al. compared RVEA with other popular MOEAs and
showed their performance was better than other many-objective evolutionary
algorithms. RVEA’s strengths in benchmark problems have been replicated in
MOO of DoE. This high performance is likely due to the unique scalarisation
approach employed by RVEA. IBEA has consistently good performance across
all test problems, this suggests it is good as a general use algorithm for MOO of
DoE.

Cheng et al. [5] showed that in many objective problems with high gene
count, IBEA and RVEA performed better in approximating the Pareto front
than NSGA-III. DoE MOO’s high gene count has replicated these results as both
IBEA and RVEA perform better than NSGA-III across all problems. However,
in Cheng et al.’s work neither IBEA nor RVEA perform best overall, which is
also confirmed by our hypervolume results.

Design of experiments MOO is a multi-modal multi-objective optimisation
problem, two solutions that may be distant in the decision space may be close
or overlapping within the objective space. A consequence of multi-modality is
that conventional MOEAs struggle to maintain diversity within the decision
space. MOEAs will remove solutions that are crowded in the objective space
when they may be distant in the decision space. Removal of distant individuals
reduces diversity in the decision space. This process - along with genetic drift
and the consequence of crossover and mutation not producing diverse offspring
effectively - reduces diversity in the objective space as the population’s decision
variables are somewhat homogeneous [18]. Consequences of multi-modality may
explain the irregular, disconnected final populations found by IBEA, NSGA-II,
and NSGA-III; the objective space can be seen in figure 3. Multi-modality has
reduced diversity in the decision space and, therefore, reduced diversity in the
objective space that can be seen as disconnected, unexplored regions.

Disconnection is not seen in RVEA; RVEA’s unique angle penalised distance
(APD) scalarisation function gives it the ability to maintain uniformity across
the population. Cheng [4] et al. showed that RVEA produces better quality
Pareto front approximations than NSGA-III in multi-modal MOO problems, as
it does in our results.

5 Case Study

The ultimate goal of experimental design is to create effective metamodels; there-
fore, the quality of metamodels should be verified as a means of determining
optimisation success. We used our designs to explore the landscape of the ratio
between time and molecular weight produced in the batch creation of branched
polymers. Parameters for this simulation include Time, the duration of each
batch production, M , monomer concentration, I, initiator, and T the tempera-
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Fig. 3: Final populations for each algorithm, PlatEMO, two objective problems

ture of the batch production vessel. For more details about the problem, see [17].
Bounds for each parameter can be seen in Table 1.

Parameter Range Unit

Time 30 to 10,000 seconds

Monomer concentration 10 to 14 Meters cubed per second

Initiator 3E-5 to 1.5E-4 Meters cubed per second

Temperature 60 to 80 degrees centigrade

Table 1: Branched polymer input specifications.

5.1 Multi-criteria Decision making

Once optimisation is complete the DM can select a representative from the ap-
proximated Pareto set. In order to validate the success of the optimisation we
select a design from the final population to use as an experimental design in the
polymerisation problem. We used decomposition to select a choice. The weights
for the four objectives are [0.1, 0.1, 0.7, 0.1] (potential, discrepancy, collapsibility,
correlation). For three objectives, [0.3, 0.1, 0.6] (potential, discrepancy, collapsi-
bility). In two objectives, [0.4, 0.6] (potential and collapsibility). We considered
collapsibility to be a very important property when exploring the landscape
therefore a high weight was given. The weights suffer the disadvantage of human
error, we cannot see all possibilities and must make assumptions. Investigations
with other weights are not within the scope of this paper.
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5.2 Results

The experiment was carried out with varying numbers of objectives on the four
different algorithms. A Gaussian process (GP) was chosen to explore the outputs
of the function because it is non-parameterised and the confidence intervals
provide a good performance measure. A GP was fitted according to the various
sizes of experimental design. Samples were then taken from these GPs and their
predictions were compared with the true function value. All GPs were built using
a matern32 kernel. The design’s dimensions were scaled to fit the bounds of the
input variables.

After the GPs have been created, we evaluate their performance using the
averages of the confidence intervals across the entire landscape. We created a
Cartesian product across the landscape; four evenly spaced intervals for four
variables produce a Cartesian product of 256 members/points in a grid across the
domain space. If the experimental design has accurately mapped the landscape,
then the confidence intervals of these GPs should be small and uniform.

Samples used in GP construction
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Fig. 4: Confidence intervals for the Cartesian evaluation, PlatEMO

Figure 4 shows box-plots of the confidence intervals using the data from
PlatEMO. No algorithm stands out as superior; however, the interquartile ranges
(IQR) generally fall as the number of samples increases. In four objectives, many
of the IQRs are low and thin. This suggests that the inclusion of more objec-
tives produces more desirable qualities; treating DOE optimisation as a many-
objective optimisation problem will produce better metamodels. In four objec-
tives a correlation criterion is included, despite it not conflicting with other
objectives the quality of the designs seems to improve. Suggesting that adding
objectives that define good qualities, but from a different perspective, can add
to the overall quality of the design. Three objectives has noticeably wider IQRs

196



Multi-objective Design of Experiments 13

than two and four objectives. Work should be done to investigate whether it is
the choice of criterions or the number of them that most effects performance;
this result gives merit to both theories.

6 Conclusions

In this paper, we have explored the use of MOO as a tool for design of exper-
iments. We successfully formulated the problem of DOE into a MOO problem.
Designs have been successfully optimised and used to investigate a real-world
problem where their success was verified. Various objective functions were cho-
sen, potential energy, discrepancy, collapsibility, and correlation; these cover var-
ious desirable qualities. We have successfully investigated the performance of
different MOEAs when optimising experimental designs. We chose four different
algorithms to compare performance. Dominance-based approaches (NSGA-II),
reference-based algorithms (RVEA and NSGA-III), and indicator-based algo-
rithms (IBEA) were used. The high gene count and distance between initial
and final population lead NSGA-II to converge better than NSGA-III in higher
objectives. RVEA’s unique scalarisation approach led it to perform well with
high gene counts; IBEA performed well as a general use algorithm. We were
successful in using optimised designs in the construction of metamodels. In the
branch polymer metamodels, two and four objectives had low and narrow IQRs.
Suggesting there is an optimal choice of criteria.

To further improve the knowledge of how best to utilise MOO in experimental
design, further experiments should be conducted. Algorithms designed to tackle
problems with large gene counts should be explored. Exploration of the use
of more objectives/different objectives is needed to confirm how the choice of
objectives effects the performance. More study into the performance of these
designs in real life problems should be done. Ishibuchi et al [12] discussed how
for many-objective problems the number of solutions needed to best approximate
the Pareto set becomes exponentially large; a bigger population is needed. We
chose 200 individuals for our work however exploration of optimisations with
higher population could be explored. Working on using different reproduction
operators is also one of the future works. It is important to consider decision-
maker’s preferences before or after the optimisation process. This work finds a
set of nondominated solutions and does not utilise preferences. Therefore, getting
one solution based on the preferences (e.g., weights, desirable objective function
values) will be in our future research.
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2. Audze, P., Eglājs, V.: New approach to the design of multifactor experiments,
problems of dynamics and strengths 35. Zinatne Publishing House pp. 104–107
(1977)

197



14 A. Evans.

3. Bates, S., Sienz, J., Langley, D.: Formulation of the audze–eglais uniform latin
hypercube design of experiments. Advances in Engineering Software 34(8), 493–
506 (2003)

4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation 20(5), 773–791 (2016)

5. Cheng, R., Jin, Y., Olhofer, M., sendhoff, B.: Test problems for large-scale mul-
tiobjective and many-objective optimization. IEEE Transactions on Cybernetics
47(12), 4108–4121 (2017)

6. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints. IEEE Transactions on Evolutionary Computation 18(4),
577–601 (2014)

8. Garud, S., Karimi, I., Kraft, M.: Design of computer experiments: A review. Com-
puters Chemical Engineering 106, 71–95 (2017)

9. Gunpinar, E., Khan, S.: A multi-criteria based selection method using non-
dominated sorting for genetic algorithm based design. Optimization and Engi-
neering 21 (12 2020)

10. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathe-
matics of Computation 67(221), 299–322 (1998)

11. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of
NSGA-II and NSGA-III on various many-objective test problems. In: 2016 IEEE
Congress on Evolutionary Computation (CEC). pp. 3045–3052 (2016)

12. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: IEEE World Congress on Computational Intelligence. pp.
2419–2426 (2008)

13. Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26(2), 131–148 (1990)

14. Joseph, V.R., Hung, Y.: Orthogonal-maximin latin hypercube designs. Statistica
Sinica 18(1), 171–186 (2008)

15. Li, Y., Li, N., Gong, G., Yan, J.: A novel design of experiment algorithm using
improved evolutionary multi-objective optimization strategy. Engineering Appli-
cations of Artificial Intelligence 102, 104283 (2021)

16. Miettinen, K.: Nonlinear multiobjective optimization. Kluwer, Boston, MA (1999)
17. Mogilicharla, A., Chugh, T., Majumder, S., Mitra, K.: Multi-objective optimization

of bulk vinyl acetate polymerization with branching. Materials and Manufacturing
Processes 29, 210–217 (2014)

18. Peng, Y., Ishibuchi, H., Shang, K.: Multi-modal multi-objective optimization:
Problem analysis and case studies. In: 2019 IEEE Symposium Series on Com-
putational Intelligence (SSCI). pp. 1865–1872 (2019)

19. Zille, H., Mostaghim, S.: Comparison study of large-scale optimisation techniques
on the lsmop benchmark functions. In: 2017 IEEE Symposium Series on Compu-
tational Intelligence (SSCI). pp. 1–8 (2017)

20. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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Abstract. The study of gene regulatory networks (GRNs) allows us to
better understand biological systems such as the adaptation of the or-
ganism to a disturbance in the environment. Hybrid GRNs (hGRNs) are
of interest because they integrate the continuous time evolution in GRN
modeling which is convenient in biology. This study focuses on the prob-
lem of identifying the variables of hGRN models. In a large-scale case,
previous work using constraint-based programming has failed to solve
the minimal constraints on such variables which re�ect the biological
knowledge on the system behavior. In this work, we propose to trans-
form a Constraint Satisfaction Problem (CSP) into a Free Optimization
Problem (FOP) by formulating an adequate �tness function and validate
the approach on an abstract model of the circadian cycle. We compare
several continuous optimization algorithms and show that these �rst ex-
perimental results are in agreement with the speci�cations coming from
biological expertise: evolutionary algorithms are able to identify a solu-
tion equivalent to the ones found by continuous constraint solvers.

Keywords: Continuous single-objective optimization · Fitness formula-
tion · hybrid GRN · Real-world application · Bio-inspired computation.

1 Introduction

Genetic regulatory network (GRN) modeling aims at studying and understand-
ing the molecular mechanisms that enable the organism to perform essential
functions ranging from metabolism to environmental disturbance adaptation.
Two types of control rules coexist in these regulatory networks: activations and
inhibitions. Their combination allows the system to behave in a large variety of
ways and the complexity of these systems comes from the so-called positive and
negative feedbacks commonly observed, which respectively lead to multistation-
arity and homeostasis (ability to maintain a balance). Studying the dynamics of
these systems opens new perspectives with crucial applications in fundamental
biology, pharmacology, medicine, or chronotherapy for instance, which tries to
choose the best time of day to administer the medication in order to limit the
side e�ects while preserving the therapeutic e�ects.
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2 R. Michelucci et al.

Numerous modeling frameworks have been proposed for representing GRNs
such as di�erential frameworks (using ordinary di�erential equations), stochas-
tic ones (considering that transitions between states have a stochastic nature),
or discrete ones (modeling the presence or absence of biological entities in the
system states). Even if each of them presents their own advantages, they all
rely on the identi�cation of the variables that govern the model dynamics and
this variable identi�cation remains the limiting step. To address this di�culty,
a considerable number of research groups apply evolutionary algorithms to �t
GRN models and variables to gene expression data, see e.g. the survey [17].

In the present work, we prefer to consider hybrid frameworks [1], called
hGRNs, which add to discrete ones [18] the time spent in each of the discrete
states. Once more, the variables' identi�cation remains the bottleneck of the
modeling process, but one can seek in such a hybrid framework for an automa-
tion of this step to build a model in agreement with the experimental observa-
tions. Indeed, modeling variations of protein concentration in a biological system
can be very hard for numerous proteins. Nevertheless, experimental observations
allow us to represent experimental traces by irregularly spaced time series of ob-
servable events. From those events, minimal constraints on the hGRN variables
can be deduced and the authors attempted to use continuous Constraint Satis-
faction Problem (CSP) solvers [2] but faced di�culties in extracting solutions.

In this paper, we show that the constraint problem, which characterizes the
set of solutions exhaustively, can be expressed as a FOP [7,9] by indirectly han-
dling constraints. More precisely, the representation of biological knowledge as a
sequence of observable events allows to de�ne a high-dimensional non-trivial con-
tinuous optimization problem in which the search space increases exponentially
with the number of genes involved in the hGRN.

The work focuses on the FOP formulation, on the �tness characterization and
performs some comparisons between several bio-inspired algorithms, leaving out
the scalability problem which is out of the scope of the article. We illustrate the
approach on a very abstract model of the circadian cycle (subsystem allowing
an adaptation of the body to day/night alternation).

The paper is organized as follows: section 2 describes the models used for
representing the dynamics of biological systems and the biological knowledge
used as an input. Section 3 proposes a method whereby the modeling problem is
reformulated as a continuous FOP that can be solved by means of a bio-inspired
algorithm. Experimental results are discussed in section 4 and some conclusions
are drawn in section 5.

2 Problem description

2.1 Hybrid GRN

To build a digital model of a biological system, it is necessary to know precisely
how it works. Such a system is de�ned as a set of genes performing a biological
function and represented in the form of a GRN where vertices V correspond
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Fig. 1: Interaction graph representing the circadian cycle (a), its discrete state
graph (b) and a possible dynamic of its hybrid state graph (c).

to an abstraction of one or more biological genes (within circles) and edges
depicting activations (+) or inhibitions (−). It can be statically represented as a
labeled directed graph or interaction graph (cf. �g. 1a). For studying the GRN
evolution, we �rst need to de�ne the system state as the concentrations vector of
the proteins related to genes. Because the regulations take place above particular
thresholds, we associate with the sign of the regulation an abstract threshold:

v1
+n−−→ v2 (resp. v1

−n−−→ v2) means that v1 can activate (resp. inhibit) v2 only if
the concentration of v1 is above its nth threshold (ranked by increasing order).
For example, graph of �g. 1a forms a negative feedback loop where each gene
(v1, v2 ∈ V ) has an indirect negative action on itself: when v1 is active, it is
above its �rst threshold (we note v1 = 1), then, v1 activates the gene v2 and v2
passes from level 0 (under its �rst threshold) to another level greater than its
�rst threshold (v2 = 1). As v2 reaches level 1, v2 inhibits v1, and so on. This
represents a highly abstracted model of regulations piloting the circadian cycle
ensuring the cyclic adaptation (day or night) of the organism.

In order to integrate dynamics in the previous model, the �rst step is to
enumerate all possible states: a discrete state is de�ned by the level of all genes
contained in the GRN. Thus, if there are n genes, each state η is de�ned by a
vector of n integers (ηv1 , ..., ηvn) and S denotes the set of all possible discrete
states of the GRN. For instance, state (0, 0), the bottom left gray square box in
�g. 1b, corresponds to the state where discrete levels of genes v1 and v2 are both
equal to 0. The second step consists in adding transitions between all these states
(black arrows). Thus, state graph of �g. 1b represents the dynamics associated
with the interaction graph of �g. 1a. Such kind of models is very interesting for
logically reasoning on regulatory changes. Nevertheless, this qualitative modeling
framework totally abstracts time information whereas , for numerous biological
systems, time plays a crucial role in the system's fate.

In addition to discrete transitions (dotted red lines in �g. 1c), an hGRN
adds continuous evolution of gene product concentration in each discrete state
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4 R. Michelucci et al.

represented by a continuous trajectory (linear, see straight red lines). One point
on this trajectory inside a particular discrete state, is given by a precise position
inside the square: π = (πv1 , ..., πvn) ∈ [0, 1]

n
. Thus, a hybrid state h is de�ned

by a discrete state η and its fractional part π. For instance, the coordinates of

the initial hybrid state hi are
(
(ηv1 , ηv2)

t
, (πv1 , πv2)

t
)
=
(
(0, 0)

t
, (0.25, 0.25)

t
)
.

Starting from hi, the hGRN dynamics is given by following the evolution
direction of the discrete state (ηv1 , ηv2) = (0, 0). This direction is de�ned by a
so-called celerity vector. Thus, the celerity of v1 in (0, 0) is denoted Cv1,(0,0) in
order to specify that this celerity is associated with v1, when v1 and v2 levels are
0. In a similar way, the celerity of v2 in (0, 0) is denoted Cv2,(0,0). More generally,
an hGRN is de�ned by both a GRN and celerity vectors C = {Cv,η}, a family
of �oated values indexed by (v, η) where v ∈ V and η ∈ S. Cv,η is called the
celerity of v in η. The hybrid state graph of �g. 1c depicts one possible dynamic
associated with the interaction graph of �g. 1a. Starting from the initial hybrid
state hi, v1 concentration increases until it reaches the right border of discrete
state (0, 0). From this border, the trajectory jumps into the neighbor state (1, 0)
because the celerity vector of this second state does not oppose the entry of
the trajectory (signs of v1 celerities in both states are the same). In (1, 0), the
trajectory reaches the right border of this discrete state which corresponds to
the maximum admissible concentration of v1. As there is no discrete state at the
right of (1, 0), the trajectory evolves on this border in v2 direction resulting in
a so-called slide of v1, noted slide

+(v1). After sliding, the trajectory enters the
state (1, 1). This process follows up until the trajectory enters back the initial
state (0, 0). The complete de�nition of hGRN dynamics can be found in [1].

Such modeling frameworks are very useful to reason on the GRN trajectories.
Nevertheless, as usual, the bottleneck of the modeling process relies on the deter-
mination of variable values controlling the trajectories, that is the celerities. The
goal of this paper is to automatically determine, from some formalized biological
information, all celerity vector values in order to obtain a valid hGRN model
of the biological system studied. In the next part, we introduce the biological

knowledge (BK) from which celerity values can be determined.

2.2 Biological knowledge

As opposed to numerous works that attempt to automatically build a model from
raw experimental data [3, 6, 13, 16], the present work takes into consideration
already-formalized information analyzed by biologists themselves coming from
both biological data and expertise. This complementary approach is preferred
because raw data are subject to noisiness and scarcity. A biological experiment
consists of (i) putting the biological system in a particular initial state partially
de�ned, (ii) recording the sequence of observable events, and (iii) measuring
the reached �nal state of the observed system. While initial and �nal states are
described using their discrete and fractional parts hi = (ηi, πi) and hf = (ηf , πf ),
a sequence of observable events is formalized by a sequence of triplets of the form
(∆t, b, e). Each element of each triplet expresses a property on the behavior in
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Fig. 2: Visual representation of the in�-
nite set of possible solutions.

Fig. 3: CSP di�culty to target solu-
tions for constraint y ≤ x2.

the current discrete state: ∆t delineates the time spent in the current state; b
speci�es the observed behaviors during the continuous trajectory expressed by
slide(v) and noslide(v); �nally, e represents the next discrete state transition
which is of the form v+ (resp. v−) specifying that the next discrete event is the
increasing (resp. decreasing) of the discrete level of v.

For the interaction graph of �g. 1a, biological expertise can be summarized
as follows: there exists a behavior starting from a particular point of coordinates
going through four discrete states and coming back to the initial point after 24
hours. More precisely, the time spent in each of the 4 discrete states is approx-
imately 5 hours in (0, 0), 7 in (1, 0), and so on. See the �rst properties of each
event in the following description of the biological knowledge:

{
hi
}



5.0
noslide (v2)

v1+


;




7.0
slide+ (v1)

v2+


;




8.0
noslide (v2)

v1−


;




4.0
slide− (v1)

v2−


{hf

}
(1)

where hi = ((0, 0)
t
, (0.0, 1.0)

t
) is the initial hybrid state and hf (�nal hybrid

state) is equal to hi. For the �rst event, v1+ constrains the trajectory to reach
the next discrete state by increasing the concentration level of v1. The second
property noslide(v2) in (0, 0) expresses that the trajectory has to reach the right
border of the discrete state without touching the upper or lower borders as ex-
plained in section 2.1. The continuous trajectory of �g. 1c satis�es all properties
of eq. (1) except for the initial point hi which is misplaced: it should be located
in the top left corner of discrete state (0, 0) to allow trajectory to be a cycle.

Figure 2 represents for each discrete state, and one after another all possible
trajectories satisfying eq. (1) using colored surfaces. Starting from hi, the purple
surface represents all compatible celerity vectors of (0, 0) which lead the trajec-
tory to the next expected state without sliding at the bottom or top border. For
illustrative purposes, two instances of compatible trajectories are highlighted in
red and blue in the �gure.
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2.3 Constraint Satisfaction Problem (CSP) approach

Our goal is to identify celerity vectors that de�ne trajectories (cf. section 2.1)
satisfying constraints given by the biological knowledge BK. An earlier attempt
has been developed using constraint-based programming [2]. This CSP formu-
lation led to constraints on celerity vectors which had to be satis�ed for the
hGRN dynamics to be consistent with BK. However, the exploitation of the
constraints generated was not so easy: classical solvers were not able to extract
particular solutions. Let us consider a CSP that aims to �nd all solutions sat-
isfying the constraint y ≤ x2. A continuous solver paves the search space in
multiple tiles (colored rectangles in �g. 3). Green tiles only contain solutions of
the CSP whereas red tiles may contain values that do not satisfy the constraint
(i.e. y > x2 above the curve).

The problem that arises from using a continuous solver may be summed up
by its inability to extract particular solutions on the function curve. It would
be necessary to obtain a tiling of in�nitesimal size. That is why we decided to
reformulate the hGRN variables' identi�cation as an optimization problem.

2.4 Problem characterization

Finding celerity values that satisfy BK constraints consists of �nding a contin-
uous trajectory that (i) goes through the right sequence of discrete states, (ii)
spends the right elapsed time in each encountered state, and (iii) satis�es the
right behavior in each state by sliding or not. In the case of a trajectory that
does not satisfy BK, we measure how much it does not respect this knowledge.
For instance, as BK speci�es spending 5 hours in (0, 0), a trajectory spending 5
hours and 10 minutes is �better� than a trajectory that only spends 2 hours in
the same discrete state. In other words, we use the notion of distance between a
trajectory and the expected properties expressed by BK: this distance vanishes
as soon as all properties of BK are satis�ed. Since BK speci�es the properties
of a sequence of states, we can decompose such distance by computing how a
considered trajectory tr inside each state η is far from BK properties of the
corresponding state. Thus, the global distance of one property p is de�ned by
summing such distances dp,η inside each encountered discrete state η ∈ S where
p is one of the three BK properties∆t, b, or e. Therefore, we de�ne three criteria:

Time criterion. The �rst criterion d∆t is related to the time spent in the current
discrete state. It is the Euclidean distance between the expected time t∗η of BK
and the time tη necessary for the current trajectory to reach the exit point from
the current state:

d∆t(tr, BK) =
∑

η
dEuclidean

(
tη, t

∗
η

)
(2)

Slide criterion. Second criterion evaluates the distance between the continuous
trajectory behaviors inside each encountered discrete state and the properties
of sliding in BK (denoted b in each observable event). Three di�erent cases
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Fig. 4: Illustration of evaluation cases with respect to BK behavior property.

are considered and respectively illustrated in �g. 4 where green color represents
BK and black dotted lines with double arrows, the distance db: (i) �v should
slide according to BK, but the trajectory tr does not�. In this case (�g. 4a),
we compute the di�erence between the fractional part of the exit point of v
according to tr (πexit(v)) and e(v) which is the fractional part of the exit point
according to the sliding BK property (it either equals to 0 when slide−(v) or 1
when slide+(v)):

db,η(tr, BK) = |πexit (v)− e(v)| (3)

where v is the gene concerned by the sliding property of the current discrete state
η; (ii) �v should slide on max (resp. min) level according to BK, but the given
trajectory slides on min (resp. max)�. We consider it (see �g. 4b) as a special
case of previous item (eq. (3)) where the exit point of the trajectory πexit(v)
is either equal to 0 (sliding right in �g. 4b) or 1 (sliding left in �g. 4b); (iii)
�v should not slide according to BK, but tr does� (�g. 4c). Here we compute
the Manhattan distance between the �rst hybrid state where v begins to slide
hslide (v) and the expected exit face noted face∗:

db,η(tr, BK) = dManhattan (hslide (v) , face
∗) (4)

In �g. 4c, the expected exit face is the north one (black line). As for the previous
criterion, db(tr, BK) is de�ned as the sum of the di�erent db,η(tr, BK) for each
encountered discrete state η.

Discrete criterium. Intuitively, we have to compare the expected next discrete
state (according to BK) with the discrete one into which the given trajectory
tr enters. Unfortunately, in some cases, it is not possible to compute tr next
discrete state because the trajectory can be blocked in the current discrete state.
Let us take as an example the situation where the celerity vector inside the (0, 0)
discrete state points towards the south-west direction (cf. �g. 5a). The trajectory
is blocked because the concentration of both gene products vanishes and there
are no neighbors in these directions. In order to accurately evaluate tr, following
the sequence of discrete states of BK, we evaluate the local distance between
the considered trajectory inside the current discrete state and the associated
BK. If the given trajectory does not allow the right discrete transition, then we
arti�cially restart the trajectory in the next expected discrete state of BK.

The initial restart point hrestart is de�ned by the new discrete state combined
with the same fractional part before it stopped. This step is illustrated by the
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(a) v1

v2

ηv1 =0

η
v
2

=
0

hi

hrestart
(b)

hi

hrestart

hrestart

Fig. 5: Illustration of blockage (a) and wrong discrete transition (b).

curved dotted lines (cf. �g. 5). Therefore, de has to take into account, on the one
hand, the Manhattan distance between the expected next discrete state η+

∗
and

the next discrete state η+ according to tr and, on the other hand, the number
of detected blockages:

de(tr, BK) =
∑

η

(
dManhattan

(
η+, η+

∗)
+ 1blockage(η)

)
(5)

where blockage(η) is True if the trajectory is blocked in the current discrete
state η, and η+ (resp. η+

∗
) is the next discrete state according to tr (resp. to

BK). Note that when a blockage occurs η+ is not de�ned and in such a case
dManhattan

(
η+, η+

∗)
is considered zero (the penalty comes from 1blockage(η)).

Aggregating criteria. We are focusing on formulating an adequate �tness func-
tion by indirectly handling constraints. Constraints are embedded into the three
previously described optimization criteria such that all we need to care about is
optimizing them. Thus, identifying celerity values consists in minimizing these
criteria. One could consider this problem as a multi-criteria optimization prob-
lem. However, they are neither con�icting nor invariant: solutions exist that
simultaneously optimize each criterion. Therefore, we suggest to combine them
into a global distance g(tr, BK) which consists in a combination of d∆t(tr, BK),
db(tr, BK) and de(tr, BK) where the criteria weights are equal. Minimizing g
leads to a single-objective optimization problem and will be addressed using bio-
inspired algorithms. We propose two versions of the aggregation of three di�erent
criteria: an additive version de�ned by g+ = d∆t + db + de and a multiplicative
version de�ned by g× = (1+ d∆t)× (1+ db)× (1+ de)− 1. Although the former
is commonly used, the latter is proposed because, intuitively, it could have a
greater impact on the convergence rate: errors are ampli�ed and improvements
are better controlled thanks to a steeper gradient. As each distance should be
as close to 0 as possible, g+ (resp. g×) should also be as close to 0 as possible
(resp. thanks to the subtraction of 1). That leads to the de�nition of two �tness
functions (knowing that BK is �xed):

f+(x) = g+(tr, BK) (6) f×(x) = g×(tr, BK) (7)

whose domain is
(∏

v∈V [0, bv]
)
× [0, 1]n × R|C| and codomain R+.
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3 Bio-inspired hGRN modeling search

This section presents di�erent bio-inspired approaches for identifying celerities of
an hGRN. For this purpose, we compare several continuous single-objective bio-
inspired algorithms for searching trajectories that satisfy biological knowledge
BK as explained in section 2.4.

Representation. As presented in section 2.2, a trajectory is characterized by
all celerities of all discrete states {Cv,η} plus the initial hybrid state hi. Thus,
trajectory genotype of �g. 1c is de�ned by a tuple of 2 integers and 2 �oat
values for hi and 8 �oat values for celerities: the genotype is represented by x =
(hi;Cv1,(0,0);Cv2,(0,0);Cv1,(1,0); Cv2,(1,0);Cv1,(1,1);Cv2,(1,1);Cv1,(1,1);Cv2,(1,1)).

Each �oated value varies in the interval [−r; r] with r equals 2 by default. In the
presented example, the problem of identifying variables of an hGRN may seem
trivial, nevertheless, in realistic models, the size of the genome is exponential
with respect to the number n of genes: the initial hybrid state hi = (ηi, πi) is
described by n integer values for the discrete state and n �oat values for the
fractional part. Because the number of celerities is also equal to n in each state
and because the number of states is |S| = ∏

v∈V (bv + 1), the total number of
celerities |C| is at most n × |S| = n × ∏v∈V (bv + 1) (possibly less in case of
equality of a priori di�erent celerities).

Fitness evaluation. Evaluating a candidate solution consists in computing the
di�erence between BK formalized in 2.2 and the given trajectory obtained from
celerities contained in the genome. To do so, we simulate the trajectory thanks
to the initial state hi and evaluate, discrete state by discrete state, each of the
three introduced criteria d∆t, db, and de.

Continuous optimization methods. A baseline random optimization (RO) [12]
and the following four continuous meta-heuristic algorithms are compared:
(i) Di�erential Evolution (DE) [15], a global search heuristic using a binomial
crossover and a mutation operator of DE/rand/1/bin. The di�erent control pa-
rameters are PCR = 0.3 and F is selected from the interval [0.5, 1.0] randomly
for each di�erence vector with the dither technique.
(ii) a simple (µ + λ) Genetic Algorithm (GA), used with a binary tournament
selection and the following operators: Simulated Binary Crossover and Polyno-
mial Mutation are applied with Fitness Survival. All duplicates are removed.
(iii) Adaptive Particle Swarm Optimization (APSO) [19] which is based on the
simulating of social behavior. The algorithm uses a swarm of particles to guide
its search. Each particle has a velocity and is in�uenced by locally and globally
best-found solutions. The default parameters are w = 0.9, c1 = 2.0, c2 = 2.0 with
a max_velocity_rate = 0.2.
(iv) Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [10], which
is a state-of-the-art and self-adaptive EA with the default initial standard devi-
ation in each coordinate σ = 0.1.
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(a) (b)

Fig. 6: Comparison of monotonic evolution of (a) mean and (b) median best
�tness values by algorithm and �tness function on 100 runs. The y-axis is log
scaled.

4 Experimental Study

The four meta-heuristics are implemented in pymoo [4]. To evaluate the algo-
rithms' performance, we execute 100 independent runs for each algorithm and
each �tness function. An initial population size of 500 is applied, followed by
35000 function evaluations (NFE). Both experiments are realized on the hGRN
of �g. 1c using BK described by eq. (1) with hi �xed to ((0, 0)t, (0.0, 1.0)t).

Results. For each algorithm and each �tness function, at each generation we
compute the best candidate solution so far, repeat 100 times the executions and
compute the mean (resp. median) over the 100 runs. Monotonic evolutions of
all algorithms are depicted in �g. 6 where straight lines represent f+ and dotted
lines, f×. It can be observed that (i) as expected, meta-heuristics results are
(far) better performing compared to RO algorithm, (ii) decreases of f+ and f×
values are done at the same pace (the curves are roughly parallel), except for
CMA-ES whose f× median evolution has a better convergence rate than with
f+, and (iii) apart from this case, GA convergence of the �tness function is one
of the best (with both f+ and f×) when focusing on the mean (resp. median).

Table 7a summaries statistics of the results obtained after 100 runs of the �ve
considered algorithms. The best result (column by column) for f+ (resp. f×) is
bolded. Minimum, average and standard deviation are reported along with the
Biological Success Rate (BSR) de�ned by the number of times an algorithm �nds
a solution with a �tness close to 0 with a precision error ε equal to 10−2. BSR
is based on the traditional success rate but introduces an important precision
error coherent with biological expertise. For instance, a trajectory which would
slide in η = (0, 0) during a fraction of seconds (< ε) very next to the exit point
e(v1) = 1.0 before going to the next discrete state is an acceptable trajectory
despite BK stating noslide(v). In addition, Cumulative Distribution Function
(CDF) curves are constructed in �g. 7b for f+ (top) and f× (bottom). Each CDF
curve describes the probability that a solution is found at, or below, a given
�tness score. For instance, in f× experiment, there is almost 60% probability
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(a)

A FE avg stdev min BSR

CMA- f+ 0.9644 1.18 3e-9 0.41
ES f× 0.7661 2.51 4e-10 0.86

DE
f+ 0.3102 0.23 0.0171 0.13
f× 0.6004 0.77 0.0373 0.04

GA
f+ 0.0029 2e-3 6e-4 1.

f× 0.0172 0.05 0.0016 0.98

PSO
f+ 0.8053 0.98 4e-4 0.48
f× 0.6938 1.71 2e-4 0.68

RO
f+ 9.1934 1.11 5.1679 0.
f× 16.6763 2.5 7.9144 0.

(b)

Fig. 7: Summary (a) and CDF curves (b) of overall best results.

that a user obtains a solution at a �tness score less than or equal to 10−4 with
CMA-ES (given 35000 NFE). From both diagrams, two algorithms stand out:
GA has the highest probability to obtain good results and there is a non-zero
probability for CMA-ES to perform top results (< 10−8).

To statistically validate the observed di�erences among the algorithms, we
conducted a statistical validation campaign on the reported performance values
of the two following scenarios: (i) algorithms performances obtained with f+
objective function and (ii) algorithms performances achieved with f× one. In
addition, a third scenario is suggested as being a comparison of algorithms per-
formances between f+ and f×. First, we employ the Friedman rank-sum test [11]
to assess whether at least two algorithms exhibit signi�cant di�erences in the
observed performance values. The p-values for the null hypothesis are p+ = 5e-56
and p× = 2e-64 for f+ and f× respectively. At the 0.05 con�dence level, the dif-
ferences among the algorithms are signi�cant. The statistical analysis proceeds
with a post hoc analysis to determine which pairs of algorithms show signi�cant
di�erences in performance (for the three scenarios considered). In this step, we
proceed to the Wilcoxon signed-rank test (as neither normality nor homoscedas-
ticity conditions required for the application of parametric tests hold [8]) on the
performance samples of each pair of algorithms. In addition, to reduce the issue
of having Type I errors given multiple comparisons, the Bonferroni correction
method is applied.

For all scenarios, Table 1 present tile-plots to illustrate all pairwise di�erences
in the observed performance samples at the 0.05 con�dence level. More speci�-
cally, the outcomes of the pairwise Wilcoxon-signed rank tests, without and with
the application of the Bonferroni correction method, are provided on the left and
right-hand side of the table respectively. Each tile corresponds to a pairwise sig-
ni�cance test between the algorithms of the corresponding row and column. The
color of the tile indicates if the observed performance di�erences were enough to
reject the null hypothesis at the signi�cance level (p-value < 0.05). Light gray
tiles indicate signi�cant di�erences between the pair of algorithms, while dark
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Fail to reject H0 Reject H0 (p < 0.05)

(f+)

PSO 4e-18

GA 4e-16 4e-18

DE 4e-18 2e-4 4e-18

CMA-ES 3e-5 5e-13 2e-1 4e-18

DE GA PSO RO

PSO 4e-17

GA 4e-15 4e-17

DE 4e-17 2e-3 4e-17

CMA-ES 3e-4 5e-12 1.0 4e-17

DE GA PSO RO

(f×)

PSO 4e-18

GA 1e-6 4e-18

DE 4e-18 9e-5 4e-18

CMA-ES 2e-7 7e-4 2e-5 4e-18

DE GA PSO RO

PSO 4e-17

GA 1e-5 4e-17

DE 4e-17 9e-4 4e-17

CMA-ES 2e-6 7e-3 2e-4 4e-17

DE GA PSO RO

(f+ vs. f×) 5e-6 3e-5 1e-15 2e-2 5e-18

CMA DE GA PSO RO

3e-5 1e-4 5e-15 8e-2 2e-17

CMA DE GA PSO RO

Table 1: Pairwise Wilcoxon statistical tests (left) with Bonferroni post hoc anal-
ysis (right) for the three considered scenarios.

gray tiles indicate that no signi�cant di�erences were observed. Analyzing these
results, if we base acceptance or rejection of the above hypotheses, we arrive
at the following insights: (i) in f+ scenario PSO performances are not signif-
icantly di�erent and (ii) Bonferroni correction reveals that PSO performances
are the same whatever �tness function. Nevertheless, the performances of other
algorithms depend on the chosen �tness function. Therefore, according to the
algorithm considered, the �tness function choice has de�nitely an impact on the
performances: f+ is preferred when considering DE and GA while f× is in the
case of CMA-ES and PSO.
Finally, with respect to the conducted experiments, GA and CMA-ES will be
investigated in the future as the �rst one gives good and stable results with
high probability, whereas the second performs better overall (the best solutions
are obtained using CMA-ES), but is subject to instability (due to exploration
phases).

Visualization of the results. The application of bio-inspired algorithms allows us
to exhibit di�erent solutions consistent with BK and they seem complementary
to the CSP approach. Both diagrams of �g. 8 present in red the overall best
trajectory obtained by GA (a) and CMA-ES (b) together with the one in blue,
obtained by the CSP approach using the CSP solver Absolute [14] combined with
a possible strategy for cutting the search space [2]. The solutions provided by
GA and CMA-ES illustrate the diversity of acceptable solutions that are compli-
ant (the structure of the trajectories is similar) with BK. From a modelization
perspective, it would be great to exhibit a diverse sampling of possible solutions,
in order to reason not only on one possible identi�cation but on a set of sensible
identi�cations.
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(a)
v1

v2

hi

(b)

hi

Fig. 8: Best trajectories (red) obtained by GA (a) and CMA-ES (b) with f+
compared to one of the solutions obtained by the CSP approach (blue).

5 Conclusion

The goal of this paper is to show that the problem of identifying variables in
an hGRN, already formalized as a CSP, can be transformed into a bio-inspired
optimization problem.

In previous works, many biological experiments have been formalized as con-
straints on time, behavior, and discrete events with the help of biologists' exper-
tise. From these constraints, our work focused on �nding how to model them as
an FOP: we proposed a representation of a candidate solution and designed two
appropriate �tness evaluation functions. To empirically test our approach, we
conducted a study with a random optimization algorithm and four well-known
continuous meta-heuristics: the proposed method shows satisfying results as the
newly introduced BSR metric is high. In our experiments, CMA-ES obtains the
overall best solutions satisfying BK constraints. Nevertheless, for this kind of
problem, GA appears to be the best meta-heuristic because of its high probabil-
ity of getting good results.

The proof-of-concept developed in this paper will shortly be applied to de-
signing a new cell cycle hGRN model where time plays a crucial role in passing
through each phase. Although this cell cycle model contains only 5 abstract
genes, the number of celerities is about 240. The optimization problem will be
challenging and lead us to apply large-scale optimization algorithms.

Moreover, when working with biologists, our ability to propose di�erent solu-
tions compliant with BK is of great importance because it leads to considerate
new information which would not exhibit otherwise. Diversity in solutions re-
�ects, on the one hand, a plurality of functioning within an observed system
and, on the other hand, helps to evaluate the robustness of oscillating biological
systems (the more diversity, the more robustness). From such a perspective, fu-
ture work will focus on multimodal approaches that could be able to sample the
set of solutions compliant with the formalized biological knowledge.
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Abstract. Automatic diagnosis of abnormalities and diseases using med-
ical scans consisting of different modalities (X-rays, mammograms, Op-
tical Coherence Tomography (OCT)) is a challenging task due to chang-
ing clinical environment and varying noise levels. Manually designing
deep learning architectures is a tedious task. However,Neural Architec-
ture Search (NAS) provides the flexibility to automatically search for a
suitable architecture for a given problem. In this paper, a Genetic Algo-
rithm (GA)-based NAS approach (GAMED-A-CNN) is proposed for the
medical image classification problem. The proposed algorithm is applied
on different datasets considering multiple performance measures, where
the effectiveness of the proposed approach was demonstrated. Further-
more, a variable-length encoding scheme is used for the representation
of CNN architecture. The convolution attention layer is used, which fo-
cuses on salient regions in the images to improve the classification per-
formance. The comparison shows that the proposed approach achieves
equal or superior performance compared to the best-known approaches.

Keywords: Medical image classification, neural architecture Search, ge-
netic algorithm, automatic machine learning, deep learning, visual atten-
tion

1 Introduction

Advances in Convolutional Neural Networks (CNNs) enable research on more
complex and advanced computer vision topics such as object detection, classifi-
cation and segmentation [1]. CNN has achieved state-of-the-art performance on
medical image diagnosis tasks, where the nature of data is complex [2]. Various
CNN architectures have been proposed in recent years for different application
domains.

Designing CNN architectures using a hit-and-trial approach is a tedious task.
because the developer needs to try combinations of different layers to create these
architectures, which requires a lot of time. The famous ResNet-50 architecture
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2 Designing Attention based CNN using GA

that uses residual connections to overcome the overfitting problem consists of 50
layers and has over 23 million trainable parameters [16]. Likewise, EfficientNet
b0 consists of 5.3 million parameters. These architectures are trained on large-
scale image recognition datasets with multiple classes, which can also be used
as a transfer learning task for medical image analysis. In transfer learning, the
pre-trained model is fine-tuned into some different relevant tasks.

However, training these architectures on medical datasets having different
characteristics does not guarantee optimal performance. Specific architectures
are designed to achieve better performance on these tasks considering smaller ar-
chitecture sizes and fewer parameters. The Neural Architecture Search (NAS) ap-
proach consists of three components: (i) Search Space, (ii) Optimization Method,
and (iii) Evaluation Strategy. The search space comprises possible Neural Net-
work (NN) architectures for exploration. For example, in the case of CNN-
based NAS, a search space consists of a set of operations used in convolution
blocks (convolution, fully connected, pooling layers), and numerous architec-
tures are formed based on their combinations. Furthermore, the combination of
these layers is represented either by a Direct Acyclic Graph (DAG) encoding
or some meta-architecture representation. The optimization method also called
the search algorithm, explores the search space to find the optimal architecture.
Over the last decade, Automatic Deep Learning (AutoDL) and NAS have gained
popularity due to their ability to solve various problems automatically.

Following the literature, multiple methods have been proposed to search for
best performing architecture from search space, such as Reinforcement Learn-
ing (RL), Random Search (RS), Bayesian Optimization (BO), gradient-based
optimization, and Evolutionary Approaches (EA). Early research on NAS uti-
lizes RL-based algorithms. However, the computational time of this approach
is very long [10]. Gradient-based methods are more efficient compared to RL
methods. Unfortunately, they often find ill-conditioned architectures and require
constructing supernet architecture in advance. This latter needs human exper-
tise to initially design supernet and makes the approach semi-automatic [4].
Genetic Algorithm (GA) is a popular metaheuristic algorithm inspired by the
theory of natural selection process. Metaheuristics have been found effective in
searching for deep learning architectures in multiple application domains such
as image classification [9] [5], time series classification [7] and medical Image
segmentation[8] etc.

Various studies have been proposed in the literature for medical image classi-
fication using NAS. However, these studies have considered only a limited num-
ber of datasets and performance measures. In order to overcome these issues, in
this study an approach is proposed for designing CNN architecture using GA
for medical image classification. The contribution of proposed GAMED-A-CNN
approach is as follows:

– Experiments on multiple Med-MNISTv2 benchmark datasets and breast,
chest and brain datasets with multiple performance measures are performed.

– A fitness function is introduced to consider the early convergence of the
algorithm.
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– Extended the proposed approach for weakly-supervised segmentation by gen-
erating heat-maps from Grad-CAM layer to verify the reliability of the pro-
posed approach.

The rest of the article is organized as follows: The related work is discussed in
Section 2, In Section 3, the proposed GA-CNN approach with the explanation of
sub-modules in the proposed approach is presented. In Section 4, the results and
experimental settings are discussed in details. Finally the paper is concluded in
Section 5.

2 Related Work

Several studies have been proposed for designing CNN-based architectures using
GA and other metaheuristics [11] [12] [9]. These studies use two types of search
structures: (i) micro and (ii) macro structure. In macro structure, NN’s topo-
logical structure is built by finding connections between cells, whereas the cells
consist of convolution, pooling, and other layers. The optimization algorithm
searches for the operations between the cells or nodes inside the neural network
in micro structure.

Usually, a CNN architecture consists of multiple building blocks, also known
as layers, i.e., convolution, pooling, attention, and normalization layers. These
layers contain parameters that need to be optimized, such as the number of
filters, kernel, and padding size in the convolution layer, pooling size in the
max-pooling layer, and probability of dropping the neural units in the dropout
layer. The convolution layer uses the kernels to perform convolution operations
on an image viewed as a matrix. Multiple convolution layers stacked one after
another with variable channel and kernel sizes assist CNN in automatic feature
extraction and more refined features. The pooling layer down-samples the feature
maps by selecting the maximum, minimum, or average value in each patch of
the feature map. This patch is also called a grid of size [gxg], where the value of
g is a parameter.

Recently, attention mechanisms have shown state-of-the-art performance on
Natural Language Processing (NLP) tasks. Motivated by attention in NLP [13],
researchers proposed to use visual attention for computer vision tasks [14].The
attention mechanism is inspired from the human visual system, which natu-
rally finds salient regions in complex scenes. Such a system adopts dynamically
weight adjustment process based on the image features. The attention mech-
anism in computer vision can be treated as a dynamic selection process that
adaptively assign weights to features according to the importance of input. Only
limited number of studies have used NAS for searching attention-based CNN
architectures for computer vision tasks [15]. Skip connections are also found
effective to overcome the overfitting problem [16]. ResNet architecture based
on residual connections outperforms previous architectures [16]. However, these
architectures are human designed and building of these architectures require
human expertise. To overcome this issue, NAS algorithms tries combination of
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skip connections between different layers and search for the best performing
architecture.

Large number of the studies have been proposed for designing CNN architec-
tures using GA. In [9], the authors proposed a GA-based approach that searches
for CNN architectures consisting of skip connections and multiple convolution
layers using a variable size encoding scheme. Their proposed approach achieves
satisfying results on the CIFAR 10 dataset. Similarly, in [17], the authors pro-
posed an automatic CNN design approach that uses a novel chromosome repre-
sentation scheme designed to achieve high accuracy within limited resources. To
improve the efficiency of the proposed approach, they adopted an ensemble-based
majority voting approach. In the first step, multiple CNN models are generated
using the GA approach. Then, an ensemble of top-performing individuals is built
to achieve better accuracy.

Other studies adopt CNN for the optimization of hyperparamters. Johnson
et. al [18] proposed a sequential crossover operation, using an incremental selec-
tive schedule that leads to higher diversity in early generations and evaluating in-
dividual performance with early stopping to reduce the evaluation and searching
time [18]. An evolution-grammar approach is proposed for designing CNN archi-
tectures for medical image classification in [19]. They formulated the problem as
a grammar representing the encoding of CNN architecture and multi-objectives
for fitness evaluation. They evaluated the performance of the proposed approach
on three datasets from the MedMNIST benchmark [3] 1.

The encoding scheme and fitness evaluation plays an important role while
designing CNN architectures using GA [20]. The encoding scheme consists of
multiple steps. In each step, a small architecture is encoded and different small
architectures are stacked to build more complex architecture. In [9], the authors
show that using variable length encoding is better compared to the fixed length
one because the optimal depth of CNN architecture is unknown for a given
problem. Inspired by this work, a variable length encoding approach is adopted
in our study.

3 Proposed GAMED-A-CNN approach

The proposed GAMED-A-CNN algorithm consists mainly of three steps (i) pop-
ulation initialization (ii) recombination and crossover operations and (iii) fitness
evaluation. The graphical representation of proposed methodology is shown in
Figure 1 and algorithm is shown in Algorithm 1, in which all the steps of pro-
posed methodology are summarized.

3.1 Representation of Individual

The CNN architecture generated by the proposed algorithm combines multiple
blocks using skip connection to generate different architectures. These blocks

1 MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical
Image Classification. available at https://medmnist.com/
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Fig. 1: Graphical Representation of Proposed Methodology

Algorithm 1 Proposed GA-CNN for Medical Images Classification

1: Input: Number of Epochs (NE), Crossover Probability (CP ), Mutation Probability
(MP ), Dataset (D), Population size (PS), Number of Generations (NoG)

2: Output: Discovered best architecture
3: P0: Initialize Population randomly with given Population size (PS)
4: g:= 1
5: while g ≤ NoG do
6: model = decode model(g,Pop)
7: model = Train model on dataset D
8: Accuracy,F1-Score,Parameters = Evaluate model on dataset D
9: Fitness = α* Accuracy + β * F1 Score +(1 - γ ) * log (Parameters)

10: Store individual in population with obtained fitness
11: parents = Select individual parents from population Pop
12: offsprings = crossover operator(parents, CP )
13: mutated offsprings = mutation operator (offsprings, MP )
14: Pop = best parents mutated offsprings ( mutated offsprings U parents)
15: g=g+1
16: end while
17: Select best individual from population (Pop)

consist of Convolution Attention Skip Layers (CASK) block, Pooling Layers
(PL) block and a Fully Connected (FC) layer. The CASK block consists of
two convolution layers, with a batch normalization layer and a Channel-Wise
Attention (CWA) 2D layer after the second convolution layer. The CWA 2D
layer is used [26] which performs attention on channels of the previous layers. In
CWA, to reduce the number of operations the number of channels are reduced
by applying 1D convolution on the input. A 32-128 string represents the CASK
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6 Designing Attention based CNN using GA

block. The first value represents the number of channels for the first convolution

Fig. 2: Graphical representation of individual with 128-32-mean-512-64-max phe-
notype

layer, and the second value represents the number of channels for the second
convolution layer. The pooling layer consists of max, average, global average and
global max average pooling. This block is represented by “mean”, “max”, “gavg”
and “gmax” which represent the type of pooling layer selected randomly during
the population initialization procedure.Furthermore, the visual representation of
an individual is shown in Figure 2.

3.2 Population Initialization

Population initialization is the first phase of GAMED-A-CNN algorithm in which
the individuals are generated randomly. During initialization, the length of an
individual is represented by L, which is initialized randomly. The individual is
stored in a Linked list data structure containing L nodes, whereas each node
represents some layer or block. Linked-list is adopted for this problem because
it is dynamic and handles variable length input.

3.3 Fitness Function

The fitness function used to evaluate individuals uses a weighting method to
combine multiple performance measures (accuracy, F1 score, and the number of
parameters). The key idea is to combine the maximum objective ( accuracy and
f1-score) and minimum objective ( number of parameters) using a weighted sum
approach. The goal is to identify the individual with the maximum accuracy and
precision score with fewer parameters. The fitness function is formulated as:

Fitness = α* Accuracy + β * F1 Score +(1 - γ ) * log (Parameters)

The values of these parameters adopted in this study are: α = 0.4, β = 0.4
and γ = 0.8. The key idea is to have the sum of weights equal to 1. These values
are obtained after experimenting with different values of α , β and γ, as these
values directly affects the quality of the individuals obtained.
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3.4 Crossover Operation

Three-point crossover is adopted in this study to generate individual offsprings
from parents. Compared to a two-point crossover approach, a three-point crossover
approach results in diversity among individuals, and offspring have diverse rep-
resentation from both individuals. If the generated random number is greater
than the crossover probability, which is 0.9 by default as suggested in [28], the
crossover operation is not performed. This probability value allows maximum
individuals to be generated and added to the population. For crossover opera-
tion, two individuals are selected from the population list. The selection criteria
for these individuals are based on their fitness values. A three-point crossover is
then performed on these two individuals to produce offspring as illustrated in
Figure 3.

Fig. 3: Graphical representation of crossover operator

3.5 Mutation Operation

The mutation operation is applied to the selected individual by morphing the
phenotype of an individual. The mutation operation does not occur if the gener-
ated random number exceeds the mutation probability, which is 0.2 as suggested
in [28] by default. At first, a layer is randomly selected from the individual repre-
sentation, consisting of multiple layers. Then one operation is randomly selected
and replaced from three operations (i) adding skip or pooling layer (ii) changing
layer with another layer (iii) removing the layer.

4 Results and Experimental Settings

4.1 Experimental Settings

The proposed GAMED-A-CNN algorithm is implemented in Python and Keras
deep learning framework. The total number of generation sizes is set to 20.
The same Keras framework is used to implement deep learning architectures
like ResNet, Inception, Xception, etc., and a learning rate of 0.0001 with Adam
optimizer is used. For AutoKeras and AutoSklearn, the implementation provided
by the authors of MedMNIST is used. All the experiments have been conducted
on NVIDIA GeForce GTX 1080 Ti GPU. Nine datasets from the MedMNIST
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8 Designing Attention based CNN using GA

(a) Example images from
MedMNIST datasets

(b) Example images from three other datasets of brain,
breast and chest organs.

Fig. 4: Example images of datasets used for experiments

benchmark belonging to multiple organs and modalities is used. These datasets
include colon pathology, breast mammograms, dermatology images, lung nodules
x-rays, and multiple organ datasets. Furthermore, three other high-resolution
datasets are also used for this study. The dataset of breast mammogram masses
consists of a combination of three different breast mammogram datasets, namely:
INbreast, MIAS and DDSM, which are three famous mammograms [21]. For
brain Magnetic Resonance Imaging (MRI) scans, The images from DICOM scans
are split into tumor and non-tumor from Brain Tumor Segmentation (BRaTS)
2019 dataset [25]. Figure 4 depicts the example images of MedMNIST and three
other datasets used for experiments.

4.2 Results and Discussion

A number of experiments have been conducted to evaluate the proposed ap-
proach. Several performance measures are used to compare the proposed ap-
proach with existing deep learning architectures, including accuracy, F1-score,
and Area Under the Curve. (AUC). An ablation study is also performed on the
proposed approach, comparing the effects of using different population sizes on
multiple datasets. Experiments on different population sizes of 10, 15, and 20
are performed on multiple datasets , as shown in Table 1. It is observed that
the increase in population size directly affects the performance of the proposed
approach. As the large population size directly affects the exploration of good
individuals among large population size.

In Table 3 the proposed algorithm is compared with deep learning archi-
tectures (VGG16,VGG19, ResNet 50, ResNet101, Xception and InceptionV3).
Compared to most algorithms, the proposed method performs better on all per-
formance measures and has fewer parameters than existing deep learning archi-
tectures. In addition, it is observed that after embedding the CWA 2D layer in
the individual block, the networks generated by GA achieved higher F1 scores
and AUC scores than GA-CNN without the CWA layer, which means the atten-
tion layer assists the network in having more positive predictions. The nature
of attention is to dynamically adjust the weights according to the importance
of the input image. Table 2 compares the results of proposed GAMED-A-CNN
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Designing Attention based CNN using GA 9

Performance Measure Type of Model
Dataset Name

Adresnal Blood Breast Derma Nodule MNIST3D Organ A MNIST Organ C Mnist Organ MNIST 3D Path MNIST Synapse MNIST 3D

ACCURACY

GA CNN- 10 0.82 0.94 0.87 0.72 0.91 0.92 0.87 0.83 0.83 0.72

GA-CNN-15 0.82 0.95 0.88 0.73 0.93 0.92 0.9 0.83 0.85 0.76

GA-CNN-20 0.83 0.95 0.89 0.77 0.93 0.92 0.91 0.76 0.89 0.77

F1 SCORE

GA CNN- 10 0.57 0.92 0.9 0.71 0.7 0.92 0.85 0.84 0.83 0.81

GA-CNN-15 0.57 0.95 0.92 0.72 0.71 0.92 0.9 0.87 0.85 0.85

GA-CNN-20 0.59 0.84 0.92 0.76 0.64 0.92 0.91 0.76 0.89 0.86

AUC

GA CNN- 10 0.75 0.97 0.88 0.94 0.91 0.99 0.89 0.98 0.95 0.69

GA-CNN-15 0.84 0.99 0.89 0.95 0.93 0.99 0.99 0.99 0.97 0.66

GA-CNN-20 0.84 0.98 0.9 0.95 0.93 0.99 0.99 0.94 0.98 0.72

Number of Parameters

GA CNN- 10 1451457 3674167 3278432 5128661 896531 735915 5687843 7923861 5213183 434521

GA-CNN-15 158977 2647176 3169025 4414343 696609 627915 5416843 4816683 3076265 442401

GA-CNN-20 5207489 479816 4443649 1887719 4889889 1060427 4098699 660747 4440521 991873

Table 1: Results on different variations of GA-CNN approach

Type of Model

Dataset

Blood Breast Derma Organ A MNIST Organ C Mnist Path MNIST TissueMNIST Pnumenia MNIST OrganSMNIST OCT MNIST

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

GA-CNN-Attention 0.93 0.99 0.91 0.92 0.72 0.95 0.87 0.99 0.74 0.97 0.74 0.95 0.63 0.92 0.90 0.95 0.94 0.98 0.77 0.94

GA-CNN-20 0.95 0.98 0.89 0.90 0.77 0.95 0.92 0.99 0.91 0.99 0.89 0.98 0.55 0.88 0.86 0.92 0.93 0.87 0.76 0.89

ResNet-18 (28) 0.96 0.99 0.86 0.90 0.74 0.92 0.94 0.99 0.90 0.99 0.91 0.98 0.68 0.93 0.85 0.94 0.78 0.97 0.74 0.94

ResNet-18 (224) 0.96 0.99 0.83 0.89 0.75 0.92 0.95 0.99 0.92 0.99 0.91 0.99 0.68 0.93 0.86 0.96 0.78 0.97 0.76 0.96

ResNet-50 (28) 0.96 0.99 0.81 0.86 0.74 0.91 0.94 0.99 0.91 0.99 0.91 0.99 0.68 0.93 0.85 0.95 0.77 0.97 0.76 0.95

ResNet-50 (224) 0.95 0.99 0.84 0.87 0.73 0.91 0.95 0.99 0.91 0.99 0.89 0.99 0.68 0.93 0.88 0.96 0.79 0.98 0.78 0.96

Table 2: Comparison of proposed approach with ResNet Transfer Learning ap-
proach

with pre-trained ResNet-18 and ResNet-50 architecture on different MedMNIST
dataset resolutions (28 224). These architectures are pre-trained on the Ima-
geNet dataset, and the results are taken from the MedMNIST benchmark paper
2. The results are compared with two variants of GAMED-A-CNN architecture
(with and without attention). This comparison argues the performance com-
parison of transfer learning with the proposed GAMEDACNN approach. Our
proposed approach achieves almost similar performance and outperforms the
transfer learning approach on some datasets.

However, compared to the number of parameters, the networks generated by
the proposed approach contain up to 50% fewer parameters than the ResNet ar-
chitecture.The p-values of accuracy, F1-score, and AUC are given below with the
null hypothesis that these methods have no difference. The Friedman test is used
to first reject the null hypothesis at the significance level of 0.05 for evaluation of
results statistically. The value of p < 0.05 means a significant difference between
the methods.The results of the proposed approach is also compared with Au-
toML techniques mentioned in the MedMNIST article [3] named AutoSKlearn
and AutoKeras. In AutoKeras, the authors proposed a NAS approach based on
network morphism by searching the architecture and hyperparameters with the
bayesian optimization approach. Their approach uses a network kernel, and tree-
structured acquisition function in bayesian optimization for efficient exploration
of search space [23].

2 MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical
Image Classification. available at https://medmnist.com/
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Table 3: Comparison of proposed approach with existing deep learning ap-
proaches

AutoSKlearn formulates the problem as Combined Algorithm Selection and
Hyper-parameter Optimization (CASH). They used two components for hyper-
parameter optimization: (i) meta-learning to initialize the Bayesian optimizer
(ii) automatic ensemble construction from configurations evaluated during op-
timization. Table 4 compares the proposed approach with AutoSKlearn and
AutoKeras in terms of AUC and accuracy scores. The AUC and accuracy scores
of the proposed approach outperform in most of the datasets. The AutoSKlearn
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Type of Model

Dataset

Blood Breast Derma Organ A MNIST Organ C Mnist Path MNIST TissueMNIST Pnumenia MNIST OrganSMNIST OCT MNIST

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

GA-CNN-20 0.95 0.98 0.89 0.9 0.77 0.95 0.92 0.99 0.91 0.99 0.89 0.98 0.54742 0.876163 0.86 0.923548 0.93 0.87 0.78 0.89

GA-CNN-Attention 0.93 0.99 0.91 0.92 0.72 0.95 0.87 0.99 0.74 0.97 0.74 0.95 0.63 0.92 0.9 0.95 0.94 0.98 0.77 0.94

AutoKeras [3] 0.87 0.98 0.8 0.87 0.71 0.91 0.76 0.99 0.82 0.99 0.71 0.95 0.82 0.94 0.85 0.94 0.67 0.97 0.78 0.95

Auto-Sklearn [3] 0.96 0.98 0.83 0.83 0.74 0.9 0.9 0.96 0.87 0.97 0.83 0.93 0.94 0.82 0.87 0.94 0.81 0.94 0.87 0.87

Table 4: Comparison of proposed GA-CNN approach with AutoKeras and Au-
toSKlearn AutoML approaches.

and AutoKeras took more time to search for an optimal architecture than the
proposed approach.

Furthermore, the line graph as shown in Figure 5 visualize the comparison
of CNN parameters generated by the proposed approach with simple accuracy
and weighted-sum based fitness function . The parameters generated using the
simple accuracy fitness functions are larger than the modified fitness function,
which means the modified fitness function assists the proposed approach to find
architectures with fewer parameters. In Table 5, the results on three different

Fig. 5: Comparison of Number of parameters of generated CNN by proposed
GA-CNN algorithm using modified fitness function on Blood dataset

datasets apart from MedMNIST on proposed GA-CNN is given. It is noted
that the proposed approach can find high-performing architecture with a small
number of parameters.

Heatmaps, also known as Class Activation Map (CAM), is an approach for
generating visual explanation from deep learning architectures. This technique
is useful to localize (look into the) region where the CNN is looking, which
helps to understand and verify the effectiveness of the architecture. It helps
to highlight class-specific regions in the image. Grad-CAM (Gradient-weighted
Class Activation Mapping) is a famous visualization technique that uses the
gradient of the target concept flowing into the last convolution layer to generate
a localization map highlighting the important region for a visual explanation
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12 Designing Attention based CNN using GA

of the concept [24]. The visual heatmaps are generated using the Grad-CAM
approach from networks generated by the proposed approach on brain, breast
and chest datasets to verify the effectiveness of the proposed approach. In Figure

Dataset Accuracy Precision Recall F1-Score AUC Params

Brain 0.837104 0.781553 0.947059 0.856383 0.909725 12289

Breast 0.733898 0.840035 0.643591 0.728807 0.830682 12289

Chest 0.773305 0.775597 0.995074 0.871733 0.653106 3073

Table 5: Results of breast density, brain tumor and chest pneumonia datasets
classified using GAMED-A-CNN approach

6, some of the heatmaps generated from chest, brain and breast datasets are
shown. The red region shows that the probability of predictions is very high
and highlights the important region. As in our problem, the network task is
to identify the tumorous / injuries region in the image. The Figures 6a and
6d visualize the heatmaps generated from brain MRI scans, highlighting the
tumorous region which means the architecture successfully locates the class-
specific region. Similarly in Figure 6b, the breast tumor region is highlighted by
red pixel values and Figure 6c highlights the infected region. These predictions
can also be formulated for segmentation problem in which the infected region is
located, also called weakly-supervised segmentation.

(a) Brain Tumor
(b) Breast Can-
cer (c) Pneumonia (d) Brain Tumor

Fig. 6: Visual Heat-maps generated from multiple chest, brain and breast dataset
outlining possible application of proposed approach for semi-supervised segmen-
tation using NAS.

5 Conclusion

This study proposes a genetic algorithm-based approach for searching CNN ar-
chitecture for medical image classification problems. A variable-length encod-
ing scheme was introduced to represent the architecture and weighted sum fit-
ness function. Numerical and visual experiments on MedMNIST and three other
datasets have shown the effectiveness of the proposed approach in terms of dif-
ferent performance measures. In the near future, more applications of NAS for
medical image analysis will be explored. Furthermore, our aim is to investigate
the influence of other metaheuristics when searching for optimal CNN architec-
tures.
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Abstract. This study focuses on a 3D multi-objective collision-free of-
fline UAV path planning problem by considering the variability in fly-
ing altitude over an urban environment that is replete with static ob-
stacles. The environment is decomposed into several equal-sized ground
cells with an infinite flying altitude. The UAV can adjust the altitude
to fly above obstacles or bypass them by choosing another way. Vari-
ous cells may have different flying risks at different altitude levels. This
study aims to find the most efficient and safe trajectory toward the des-
tination while maximizing the number of visited obstacle-free cells. This
aim could be followed in real-world surveillance and disaster tracking
operations, where the users may want to collect data even en route to
the destination. This problem is formulated as a multi-objective mixed-
integer non-linear mathematical model in which minimizing the flying
distance, the required energy, the maximum path risk, and the number
of not-visited obstacle-free cells are the objective functions. An enhanced
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is developed to
solve the problem. Computational results indicate the superiority of the
developed algorithm in solving several real-world data sets.

Keywords: Path Planning · UAV · Multi-objective Optimization · NSGA-
II.

1 Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are aerial vehicles
without carrying a human operator. They could be controlled remotely or fly
automatically. The first purpose of designing UAVs was to deploy them in mili-
tary operations. Something that has led to the era of drone wars regarding the
significant role of armed UAVs in Libya, Nagorno-Karabakh, Syria, and Ukraine
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2 M. Golabi et al.

wars [6]. Amazon’s Prime Air project in 2013 was a milestone in using UAVs
for civil missions. Labor cost reduction, higher moving speed, wider aerial vi-
sion, and avoiding traffic jams are the main advantages of aerials vehicles. UAVs
flexibility and cost efficiency have made them one of the most popular aerial
vehicles for a wide variety of civil operations such as last-mile delivery [25], relief
distribution [13], mapping [29], search and rescue [3], surveillance [19], etc.

The mentioned extended scope of applications highlighted the need for opti-
mization studies in UAV-based missions. The literature is now replete with opti-
mization studies focusing on determining the best location of launching and/or
refueling stations [26], the optimal visit sequence and route of drones [21], the
shortest path to the target point [11], etc. This study aims to focus on the UAV
path planning problem by introducing a new multi-objective version that tries to
maximize the number of en route visited cells while minimizing the path length,
the required energy, and minimizing the aggregation of the maximum path risk.

As one of the main problems in the navigation of autonomous UAVs, path
planning aims to safely direct each UAV toward the desired destination such that
the main goals and objectives are fulfilled [14]. Generally, the main objective is to
find the shortest collision-free path, however, other objectives such as optimizing
the required energy, path smoothness, path risk, and the number of visited cells
are also considered. The main objective could be considered as a criterion to
categorize path planning problems based on the applications. The main type is
the UAV shortest path problem that aims to find the shortest traveling distance
to reach the destination. Considering the available resources, informative path
planning maximizes the collected data about an unknown environment [22]. Co-
operative path planning refers to coordinated missions having a set of UAVs
flying simultaneously [2]. Determining a path that passes through all points of
the area of interest refers to the full coverage path planning problem [15]. Maxi-
mum coverage path planning [5] could be a solution for the cases in which limited
resources are not enough to cover the entire area. It is noteworthy to mention
that there are some multi-objective studies considering a combination of these
objectives, simultaneously. The existing literature surveys [28,33,34] scrutinize
different types of UAV path planning problems and corresponding solution algo-
rithms. Path planning could also be categorized into offline and online problems
[31]. Offline path planning is applied in a completely known environment, where
the best path could be obtained prior to the actual flight. Online path planning
is for uncertain environments with unknown moving obstacles and adversaries.

Modeling the environment is one of the key issues in UAV path planning
problems. The 3D flying space, known as world space, has been represented us-
ing different methods in the literature [8]. Voronoi diagrams were among the first
methods applied to represent the free space using a network of one-dimensional
lines. The cell decomposition approach represents the free space with a set of
convex polygons, called cells. The adjacency relationship among the cells is rep-
resented by the connectivity graph. The potential field is another method that
represents the free space by assigning repulsive and attractive forces to obstacles
and the destination, respectively, such that the UAV can move toward the goal
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Multi-objective UAV Path Planning Problem 3

in a collision-free manner. One of the predominantly used methods to represent
the environment is the occupancy grid map that decomposes the world space
into a set of equal-sized cells with unique indices. The cells could be related to
the free space or obstacles.

Based on the type of the studied problem and the characteristics of the ap-
plied environment modeling technique, there may be different methods to solve
the UAV path planning problem [30]. Like the majority of optimization prob-
lems, the path planning problem can be formulated as a mathematical model
and solved using the existing mathematical approaches. The complexity of the
studied problem and the size of the solution space are the main barriers to solv-
ing the developed mathematical models. Graph search methods are among the
classical techniques to solve the UAV path planning problem. The Dijkstra and
A* algorithms are the most well-known graph search methods applied to find the
shortest paths. Among classical methods, A* is well-known, as the most efficient
approach in larger world spaces [4]. Sampling-based methods such as proba-
bilistic roadmap (PRM) and rapidly-exploring random tree (RRT) are effective
planners to find feasible solutions in a short time, without focusing on optimal-
ity conditions. The potential field is another method that not only represents
the space, but also determines the collision-free path to reach the destination.
Although this method has a quick response speed, it can be easily trapped in
local minima, especially in larger environments. These solution approaches are
generally suitable for single-objective path planning problems. They are mainly
focused on finding the shortest collision-free path between origin and destination.
Introducing new objective functions or studying the problem in a multi-objective
framework requires implementing other solution algorithms. Metaheuristics are
the solution algorithms that can be applied to solve these types of path plan-
ning problems in both single or multiple UAV scenarios. By a glimpse into the
literature one can find several applications of metaheuristics such as Genetic
Algorithms [27], Ant Colony Optimization [16], and Differential Evolution [32]
in solving UAV path planning problems.

The majority of UAV path planning problems are inspired by robotic motion
planning studies in which moving through an area occupied by an obstacle is
forbidden. However, the main difference between a ground-moving robot and a
UAV is the possibility of adjusting the altitude and flying above existing ob-
stacles. One of the first studies considering the possibility of flying above ob-
stacles or bypassing them is done by Golabi et al. [12]. Using occupancy grid
maps to represent the environment, they studied a multi-objective UAV path
planning problem to minimize the path length, the consumed energy, and the
path risk, simultaneously. Introducing several constraints and decision variables
for linearizing, they formulated the problem as a mixed-integer linear program-
ming model. They solved the problem using several state-of-the-art evolutionary
multi-objective optimization algorithms.

The current paper tries to study a maximum-covering version of [12] by
adding a new objective function to minimize the number of non-visited obstacle-
free cells. Considering a continuous flying altitude level, the problem is formu-
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lated using a modified mathematical programming model. Finally, the problem
is solved on several real-world 3D datasets using a modified solution algorithm.
The rest of this paper is organized as follows. The problem definition is given in
section 2. The developed mathematical formulation is presented in Section 2.2.
Section 3 describes the applied solution algorithms. The obtained results and
discussion are presented in Section 4. Finally, the paper is concluded in Section
5.

2 Problem Definition

2.1 Problem Description

This work studies a 3D UAV path planning problem to find the most efficient and
safe trajectory toward the destination while maximizing the number of visited
obstacle-free cells. This aim could be followed in real-world surveillance and
disaster tracking operations where the users may want to collect data even en
route to the destination. The main objectives of this study could be listed as
minimizing the path length, the consumed energy, the path maximum risk, and
the number of non-visited obstacle-free cells. Adverse to the majority of existing
UAV path planning problems that consider a fixed flying altitude level, this work
reflects a more realistic image of the problem by taking the possibility of altitude
change into account. Traditionally, obstacles are considered as forbidden flying
zones in UAV path planning problems. This assumption has been inherited from
the robotic motion planning studies in which a robot can’t move through an
area occupied by obstacles. Therefore, bypassing an obstacle and selecting a free
way-point is the only option to reach the destination without any collision with
obstacles. Adjusting the altitude to fly above the obstacles is another option
that could be chosen in the case of having the possibility of changing the flying
altitude while moving toward the destination.

Using the occupancy grid map technique, the environment is represented
as several equal-sized ground cells with an infinite flying altitude. These cells
form a collection of rows and columns on the ground space. The cells occupied
with obstacles with the heights of corresponding obstacles are determined in
advance. The UAV starts the mission from the origin by following a path to
reach the destination such that the considered objectives are optimized. The path
could be modeled as a combination of visited ground cells and the concomitant
flying altitudes above while passing through them. For each ground cell, the
next move is defined using a set of succeeding cells by considering flying in 5
different directions such that the UAV would be either one column closer to the
destination, or at least at the same flying column (see Fig. 1). If the selected
succeeding cell contains an obstacle, the UAV needs to adjust the altitude level
and fly above that obstacle. Therefore, the flying distance between any two
consecutive cells would be a function of their ground distance and the amount
of altitude change. It should be noticed that the altitude level while flying above
different cells may be restricted by the air space authorization due to different
reasons such as the proximity to military bases, airports, or traditional flying
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A: Origin
Z: Destination

: Altitude levels
: Toward the succeeding cell

Fig. 1: The flying environment.

corridors. Based on the previous data and proximity to dangerous obstacles and
windy areas, there would be various risk factors associated with different altitude
levels of each ground cell.

As it was mentioned earlier, the flying distance between any two consecutive
cells depends on their ground distance and the change in altitude level. Having
these two values, the flying distance is calculated using the Pythagoras theory.
The energy consumption will also be a function of both altitude level and flying
distance. The consumed energy for while moving from point i to point j at
different altitude levels is calculated using the formula proposed by Dorling et
al. [10]. Since it is assumed that the flying altitude is not fixed, the term (Wg∆+

ij)
is added to the mentioned formulation for considering the extra energy needed
to increase the flying altitude:

θ = W 3/2
√

g3

2ρζn
dij

ν +Wg∆+
ij (1)

Here, W is the drone and battery weight (kg), g is the gravity (N), ρ is the fluid

density of air (kg/m
3
), dij is the distance between point i and j (m), ∆+

ij is the
increased altitude (m), ν is the flying speed (m/s), ζ is the area of spinning blade
disc in m2, and n is the number of rotors. Considering the normal flying altitude
of UAVs, the gravity could be considered as a fixed value as the gravitational
force would have decreased just by 1.2% if an object flies at an altitude of 40
km. The fluid density of air is calculated using Eq. 2 [20], where H is the average
altitude while flying from point i to point j.

ρ = (1− 2.2558.10−5H)4.2577 (2)

For each visiting cell, the maximum risk factor of traversed altitude levels while
passing to the successive cell is calculated. The accumulated maximum risk factor
is considered as the maximum path risk. On the premise that obstacles are
barriers to collecting data about occupied cells, the number of visited obstacle-
free cells could be a criterion to optimize the data collected en route to the
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destination. In other words, it is not possible to observe the area concealed by
the obstacles.

2.2 Mathematical Model

Considering a continuous flying altitude, the modified maximum-covering ver-
sion of the multi-objective mathematical model proposed in [12] is defined using
the following nomenclature:

Sets:
I: the set of ground cells (i, j, g, A (the starting cell), N (the final destination)
∈ I)
δ+i : the set of cell i’s succeeding cells
δ−i : the set of cell i’s preceding cells

Scalars:
M : a large positive number
v: the drone’s flying speed
θ: a scalar used in calculation of consumed energy (θ = W 3/2

√
g3/2ζn)

Parameters:
αi: 1 if there exist an obstacle at cell i; 0 otherwise
aj : the height of obstacle located in cell j, if exists
Uj : the maximum allowed flying altitude over cell j
rkij : the risk factor concomitant to flying on cell i at altitude k

hA: the drone’s starting altitude
dij : the direct distance between the neighbour cells i and j

Decision Variables:
Xij : 1 if drone enters cell j from cell i; 0 otherwise
hij : the adjusted altitude while entering cell j from cell i (hij ≥ 0)
∆ij : absolute value of altitude change while flying from cell i to cell j (∆ij ≥ 0)
∆+

ij : the ascended altitude while flying from cell i to cell j (∆+
ij ≥ 0)

∆−ij : the descended altitude while flying from cell i to cell j (∆−ij ≥ 0)

The first set of constraints refers to the network flow constraints:

∑
j∈δ+A

XAj = 1 (3)

∑
i∈δ−N

XiN = 1 (4)

∑
j∈δ+i Xij =

∑
j∈δ−i Xji ∀i ∈ I|{i ̸= A and i ̸= N} (5)

∑
j∈δ+N

XNj = 0 (6)
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Leaving the origin and reaching the destination are guaranteed by Eq. 3 and Eq.
4, respectively. Eq. 5 indicates that the drone should leave any visited cell, except
for the starting cell and destination. Eq. 6 assures that the path is finished just
after reaching the final destination. The altitude level while arriving at each cell
is adjusted using the following set of constraints.

hij ⩾ aj −M(1−Xij) ∀j ∈ I|{j ̸= A}, ∀i ∈ δ−j (7)

hij ⩽ MXij ∀j ∈ I|{j ̸= A}, ∀i ∈ δ−j (8)

hij ⩽ Uj ∀j ∈ I|{j ̸= A}, ∀i ∈ δ−j (9)

Eq. 7 assures that the adjusted altitude while arriving at cell j is higher than
the located obstacle (if any). If the drone does not fly from cell i to cell j, Eq.
8 sets hij equal to zero. Eq. 9 defines an upper bound for the adjusted altitude
while arriving at cell j. Considering the adjusted altitude, the value of altitude
change for each pair of consecutive visiting cells could be calculated using the
following constraints.

∆+
ij = max(hij −

∑
g∈δ−i hgi, 0) ∀i ∈ I|{i ̸= A}, ∀j ∈ δ+j (10)

∆−ij = max(
∑

g∈δ−i hgi − hij −M(1−Xij), 0) ∀i ∈ I|{i ̸= A},∀j ∈ δ+j (11)

∆+
Aj = max(hAj − hA, 0) ∀j ∈ δ+A (12)

∆−Aj = max(hA − hAj −M(1−XAj), 0) ∀j ∈ δ+A (13)

Eq. 10-13 define the change in altitude while assuring that in case of not traveling
from i to j, the related change in altitude is set to zero. This set of constraints
guarantees that while flying from cell i to cell j, the altitude can be increased,
decreased, or kept at the same level. The absolute change in altitude, ignoring
the increasing or decreasing nature is calculated as:

∆ij = ∆+
ij +∆−ij ∀j ∈ I, ∀i ∈ δ−j (14)

The first objective function is to minimize the path length. Considering a triangle
in which the base is the direct distance between the consecutive visiting cells and
the height is the absolute value of altitude change, the UAV’s flying distance is
calculated using the Pythagoras theorem. So, the first objective function that
minimizes the aggregate flying distance is:

Min Z1 =
∑

i∈I
∑

j∈δ+i (dij
2 +∆ij

2)Xij (15)

The energy consumption while traveling from cell i to cell j depends on the
related fluid density of air and the flying distance. The fluid density of air is a
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function of flying altitude. In this research, the fluid density between cells i and
j shown as ρij is considered as the average of fluid density of air while arriving
at cells i and j:

ρij = (1− 2.2558.10−5(
hij+

∑
g∈δ

−
i

hgi

2 ))4.2577 ∀i ∈ I|{i ̸= A},∀j ∈ δ+j (16)

ρAj = (1− 2.2558.10−5(hAj+hA

2 ))4.2577 ∀j ∈ δ+A (17)

Using Eq. 16 and 17, the second objective functions could be written as:

Min Z2 =
∑

i∈I
∑

j∈δ+i
θ√
ρij

((dij
2 +∆ij

2)Xij) +Wg∆+
ij (18)

To account for the maximum risk while moving from cell i to cell j the sky is
decomposed into several altitude levels with different risk factors. Let’s assume
that a is the adjusted altitude at cell j such that a = hij . So, the actual altitude
at cell i could be called b such that b = hij − ∆+

ij + ∆−ij . The accumulated
maximum path risk could be formulated as:

Min Z3 =
∑

j∈δ+A
max

k∈[min(a,A),max(a,A)]
{rkA}XAj+

∑
i∈I|i ̸=A

∑
j∈δ+i max

k∈[min(a,b),max(b,a)]
{rki }Xij (19)

Finally, the fourth objective function that minimizes the number of not-visited
obstacle-free cells could be formulated as follows:

Min Z4 =
∑

i∈I
∑

j∈δ+i (1−Xij)(1− αi) (20)

3 Solution Method

Path planning is known as an NP-hard problem [17]. Thus, these problems are
generally solved using metaheuristic algorithms. Golabi et al. [12] reported the
superiority of the NSGA-II algorithm in solving their proposed multi-objective
UAV path planning model. They also showed a correlation between path length
and energy consumption and tried to combine these two objective functions. As
an expanded maximum-covering version of [12], this study applies a modified
version of the NSGA-II algorithm to solve the proposed multi-objective model
in which the first two objectives are combined to form a new objective function.

3.1 Preliminary concepts of NSGA-II

NSGA-II is a well-known evolutionary algorithm for solving multi-objective opti-
mization problems [7]. It starts with a randomly generated population. Each in-
dividual in the population is associated with a two-level ranking scheme. The first
level refers to non-dominated sorting that assigns solutions to different Pareto
fronts based on their dominance relationship. The second level, known as the

238



Multi-objective UAV Path Planning Problem 9

crowding sort, is a strong reflection of the diversity that determines superior-
ity/inferiority relationships between entities at the same rank based on their
crowding distance. Evolution is based on a two-step process of variation based
on recombination operators, and selection that results in a new generation of
individuals.

3.2 The proposed evolutionary components

In this study, each solution is represented as a matrix with two rows, where
the first-row alleles represent the visited ground cells and the second-row alleles
indicate the adjusted altitude just before entering the corresponding ground cell.
It is noteworthy to mention that the first-row alleles start with the origin and
end at the destination. Each first-row allele is followed by a randomly selected
non-visited neighbor cell. The solution would be infeasible if all the neighbor cells
are previously visited before reaching the destination. For each allele of the first
row, the corresponding second-row allele would be a random integer between the
first-row cell’s obstacle height (if any) and the related maximum allowed flying
altitude.

This study applies a one-point crossover operator that decomposes each solu-
tion into two segments. This operator generates two offspring by merging differ-
ent segments of two parental chromosomes. It should be mentioned that merg-
ing the parental chromosomes from the crossover point may violate the idea of
neighbor cells. In other words, the merging cells of different segments may not
be neighbors. Thus, further instructions may be needed to merge the parental
chromosomes and generate feasible offspring that satisfy the concept of neigh-
bor cells. Let’s assume that C is the position of the crossover point. Based on
first-row genes, if the C+1th allele of the second parent is a neighbor cell of the
Cth allele of the first parent, the first child is generated by merging all the first
segment of the first parent with all the second segment of the second parent.
Otherwise, until reaching a point by which merging the parents is possible, the
crossover point will be iteratively shifted to the right-hand side for the selected
parent or both of the parents. It could be required to add some new first and
second-row genes to one of the parents before merging it with another one. This
procedure is fully explained in [12]. Due to the mentioned complexity raised by
changing the first-row alleles, the mutation operator is only applied to second-
row genes. In this operator, a random number of second-row genes are randomly
chosen and their alleles are replaced with randomly generated numbers in their
allowed ranges.

The horizontal diversity of the Pareto front in multi-objective evolutionary
algorithms is realized by removing extra solutions when the number of non-
dominated solutions exceeds the population size [24]. NSGA-II uses the crowding
distance to remove excess individuals. The main drawback of crowding distance
is the lack of uniform diversity in the obtained non-dominated solutions [9].
The modified NSGA-II algorithm applied in this study uses a dynamic crowding
distance method to overcome this problem [18]. The main idea of this method
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Fig. 2: An example of a considered scenario

is to remove the individual with the lowest crowding distance value, followed by
the recalculation of crowding distance for the remaining solutions.

The modified NSGA-II algorithm also benefits from a rank-based roulette
wheel selection to choose better solutions for recombination [1]. This operator
uses crowding distance to rank the solutions in the non-dominated set. The
solution with a better rank would have a higher chance of being selected as a
potential parent in the mating pool. Last but not least, the developed modified
NSGA-II applies a local search operator on some randomly selected obstacle-
free second-row genes of offspring generated through the mutation operation by
copying the preceding allele. This operator refrains from unnecessary changes in
altitude levels.

4 Results and Discussion

The modified NSGA-II algorithm is applied to solve the developed mathematical
model on a partial map of Berlin city imported using 3D City Database Im-
porter/Exporter 5 and FME Data Inspector 6 to extract the Geography Markup
Language (.gml) files. The map is used as a large scenario based on the num-
ber of considered buildings treated as static obstacles, and based on different
origins and destinations (see Fig. 2). Polygon triangulation is used to parti-
tion buildings with different polygon shapes into a set of triangles with pairwise
non-intersecting interiors. Each scenario is represented as a grid-based map with
equal-size cells, such that each cell is identified with a unique index. A cell is con-
sidered obstacle-free if it is not occupied by any triangle of considered buildings.

To evaluate the performance of the modified NSGA-II, the same scenario is
also solved using a classic NSGA-II algorithm. The comparisons are based on

5 https://www.3dcitydb.org/3dcitydb/3dimpexp/
6 https://www.safe.com/transformers/inspector/
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Fig. 3: Examples of: (a) convergence plot of hypervolume; (b) non-dominated
solutions obtained using modified NSGA-II

50,000 function evaluations, with 15 independent runs on each scenario. For each
algorithm, the applied parameters comprising the population size, the crossover
probability, the mutation probability, the mutation rate, and selection pressure
are tuned using MAC [23] as an automated algorithm configuration tool for
multi-objective optimization. The experiments in MAC are executed subject to
100 function evaluations. For each generated configuration, experiments are re-
peated 5 times to reduce the noise for the adopted surrogate model in MAC.
The fine-tuned algorithms are implemented to solve the generated scenario ex-
tracted from the map of Berlin city. The effect of using MAC on improving the
obtained hypervolume is illustrated in Fig. 3.a. Furthermore, Fig. 3.b exemplifies
the non-dominated solutions of one of the considered scenarios obtained from
the modified NSGA-II algorithm. Generally, the obtained results indicate the su-
periority of the modified NSGA-II algorithm based on the hypervolume metric,
as well as the obtained number of non-dominated solutions.

The results obtained from implementing the solution algorithm on the con-
sidered occupancy grid map highlight the effect of the new objective function
added to minimize the number of non-visited obstacle-free cells. The algorithm
is able to obtain longer paths due to the trade-off between conflicting objec-
tive functions. Besides, the continuous variable for flying altitude provides more
realistic solutions. It is noteworthy to mention that the algorithm is coded in
MATLAB R2022a and implemented on an Intel Core i7-6500U CPU @ 2.50 GHz
laptop with 8 GB RAM, 6 MB L3 Cache, and 1 MB L2 Cache. It took almost
3200 seconds to solve the problem on a grid map of size 10000 cells.

5 Conclusion

Considering both the possibilities of bypassing obstacles or adjusting the altitude
to fly above them, this work studies a multi-objective offline maximum-covering
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path planning problem. Considering a continuous variable altitude level, this
study aims to minimize the flying distance, the required energy, the maximum
path risk, and the number of not-visited obstacle-free cells, simultaneously. The
studied problem is formulated by a novel mathematical model. The applicability
of the developed model is checked using real scenarios generated from a partial
map of Berlin city. Using a rank-based roulette wheel selection and a dynamic
crowding distance method, the problem is solved by a modified NSGA-II al-
gorithm hybridized with a local search operator. Considering a dynamic online
environment consisting of both static and moving obstacles could be an inter-
esting guideline for future studies.
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Abstract. During escaped wildfires, community assets are at risk of
damage or destruction. Preventive operations requiring dispatching re-
sources and cooperation can be taken to protect these assets. The plan-
ning of such operations is sensitive to unforeseen disruptions that may
occur. To account for the effects of the disruption, it may be necessary
to alter the initial routes of the vehicles. The problem rising from the
rescheduling of the vehicles is a bi-objective optimization problem known
as the Dynamic Asset Protection Problem (D-APP). We propose a ge-
netic algorithm based on the Non-dominated Sorting Genetic Algorithm
(NSGA-II) to solve the D-APP. We define new mutation and crossover
operators adapted to our problem, and we propose procedures to repair
and evaluate a solution based on Mixed Integer Programming (MIP).

Keywords: bi-objective optimization · vehicle routing · team orienteer-
ing · synchronization · NSGA-II.

1 Introduction

In the recent years, wildfires break out more frequently throughout the world.
When wildfires are not controlled, they quickly expand and can burn thousands
of hectares of vegetation. In urban areas, the fire can also harm people and dam-
age infrastructure. Emergency response teams and resources must be deployed
to respond to these escaped wildfires. Multiple operations are jointly carried
out, from fire containment to evacuation, sheltering operations and including
asset protection. In this paper, we will focus on the preventive actions for the
protection of community assets.

Depending on the community asset, different actions can be taken to mitigate
or nullify the damages caused when the wildfire reach them. Such actions include
removing fuel materials, wetting down buildings, or reducing fire. Preventive pro-
tection actions must be taken in a timely manner: it has to be performed before
the fire reaches the asset, but not too early to be efficient. Some interventions
may require several trucks with specific capacities, thus requiring different teams
to collaborate to perform the task in a synchronous way. In particular, we will
focus on rerouting the vehicles after a disruption occurs that invalidates their
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initial routes. A wide range of disruptions can impact our initial plans in dif-
ferent ways. For example, we may not have all the resources available, due to a
faulty equipment or a vehicle breakdown. The time windows on some assets may
be updated after unforeseen wind or weather changes, altering the propagation
of the fire. Travel times between assets may also change if traffic jams are caused
by people evacuating, or a road might be blocked by a fallen tree.

The problem of routing vehicles for preventive protection operations can
be viewed as a variant of the Team Orienteering Problem (TOP) with time
windows and synchronization constraints. This problem was first introduced by
Merwe et al. [9] as the Asset Protection Problem (APP). The authors proposed
a Mixed Integer Linear Programming (MILP) formulation of the problem. Later,
Merwe et al. [10] introduced the dynamic APP (D-APP), which is a bi-objective
problem for rerouting the vehicles after a disruption. The authors updated the
MILP formulation from the mono-objective version of the problem to account
for the deviation. They generated theset of solutions offering optimal trade-off
between protection of the assets and deviation from the initial routes using an
ε-constraint scheme. Peña et al. [13] proposed a new mathematical formulation
and valid inequalities based on the properties of the D-APP.

In this paper, we will present a heuristic solution method for the D-APP
based on the Non-dominating Sorting Genetic Algorithm (NSGA-II) [3]. We
will introduce different crossover and mutation operators specific to our problem,
including a destruction/construction operator as well as different MILP to repair
and evaluate a solution.

2 Dynamic Asset Protection Problem

During a wildfire, community assets such as schools, hospitals, bridges are at
risk of being damaged. A fleet of heterogeneous vehicles must be dispatched to
the different assets to perform preventive protection operations. These opera-
tions must be accomplished within a specific time window, and often require the
cooperation of multiple vehicles.

An asset is protected if, within its time window, enough vehicles are present
at the asset to accomplish the protection operation. The protection of an asset
requires some resources (e.g., crew size, number of fire hoses, ...), that need to
be met by the vehicles assigned to the asset.

In the dynamic APP, we already have routes assigned to the vehicles. How-
ever, an unforeseen disruption occurred and these initial routes may no longer
be feasible nor optimal. We want to recompute the routes to take into account
the consequences of the disruption. We then have two competing objectives:

– maximizing the total value of the protected assets
– minimizing the deviation from initial routes

We define the deviation as the number of vehicle/asset reassignments, i.e., if
an asset is added to or removed from the initial route of a vehicle, then it implies
a deviation of one.
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2.1 Problem presentation

An instance of our problem is represented by a graph G = (V,A), with V
representing the locations and A the arcs. There are n total locations. The first
m locations represent the depots from which the vehicles depart, and the n-th
location is a fictitious sink node. The remaining n−m−1 locations represent the
assets to protect. We define subsets of V : the depots V d and the assets V a. Each
asset i has a value vi, a requirement vector ri, a service duration ai and a time
window [oi; ci]. The set P represents the available vehicles. Each vehicle p has a
capability vector capp. In order to be protected, the vehicles assigned to an asset
must collectively meet the resource requirement of the asset. For example, an
asset with resource requirement ri = (1, 2, 1) can be protected by vehicles p and
q with respective capability capp = (1, 1, 0) and capq = (1, 1, 1). All the vehicles
assigned to the asset must be present when the service starts, and throughout
the entirety of the service. Parameters tijp are the travel time between locations
i and j for vehicle p. Travel times satisfy the triangle inequality. We note Φ the
solution representing the routes of the vehicles before disruption.

Before proceeding further, we introduce some definitions. An arc between two
assets i and j is called a valid arc for vehicle p if oi+ai+tijp ≤ cj . In other words,
vehicle p can visit asset i before asset j within the respective time windows of
the assets. Additionally, we say that the insertion of an asset k between two
assets i and j in the route of vehicle p is at a valid position if arcs (i, k) and
(k, j) are valid arcs for vehicle p.

2.2 Bi-objective optimization

The D-APP is a bi-objective optimization problem. We recall some terminology
related to Multi-objective Optimization Problems (MOP).

In MOP, a solution is evaluated according to an objective function vector
f = (f1, ..., fd) with d objectives. Without loss of generality, we suppose that all
the objectives are to be maximized. These d objectives are competing against
each other: improving one of the objective will often degrade one or multiple
other objectives. Hence, we want to find the set of efficient solutions based on a
dominance relation between solutions [7].

Definition 1. Let u and v be vectors of Rd, we say that u dominates v if and
only if ui ≥ vi for each i ∈ {1, ..., d} and there exists j ∈ {1, ..., d} such that
uj > vj. We denote this dominance relation by u � v.

Definition 2. A solution s is efficient if there is no other solution s′ such that
f(s′) � f(s), with f(s) the objective function vector associated with solution s.

For ease of use, we say that a solution s dominates a solution s′ if and
only if its objective function vector f(s) dominates f(s′). The set of all efficient
solutions is known as the efficient set. The set of objective vectors with respect
to the efficient set is call the non-dominated set, or Pareto front [12].
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In many vehicle routing problems, multiple competing objectives have been
considered [6]. A popular approach is to solve the multi-objective problem using
a decomposition approach. The multi-objective problem is decomposed in mul-
tiple single objective problems, using aggregation functions. For instance, the
bi-objective traveling salesman problem has been solved using ant colony opti-
mization based on decomposition [2]. A metaheuristic method that combines a
Pareto ant colony optimization algorithm and a variable neighborhood search
method has been proposed for the bi-objective TOP (BTOP) [14]. Finally, a
two-phase decomposition method based on Local Search has been proposed to
solve Selective Pickup and Delivery Problems with Time Windows (SPDPTW)
[1].

Several approaches extend the fast and elitist Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II) [3]. It has been efficiently applied to various multi-
objective problems including but not limited to the BTOP [11], the Green Vehicle
Routing Problem [4] and the Vehicle Routing Problem with Route Balancing [5].

3 NSGA-II

In this section, we will discuss the implementation of the NSGA-II algorithm to
solve the D-APP. We will first present in Section 3.1 an overview of the NSGA-II
algorithm. We will then present in Section 3.2 the encoding we encounter in the
literature for a genetic algorithm on a problem similar to the problem at hand.
We will introduce mutation and crossover operators based on the properties of
our problem in Section 3.3. Finally, we will define two different procedures for
repairing and evaluating a solution in Section 3.4.

3.1 Overview

NSGA-II is an iterative algorithm. For each generation t, we consider a popula-
tion Rt of size 2N , that is the combination of two subpopulations of size N : Pt,
the parents, and Qt, the offspring. There are three main steps in the NSGA-II
algorithm, described below. A solution i has two fitness criteria relative to the
current population: a rank ri and a crowding distance di. The rank represents
the quality of the solution with regards to the dominance relation presented in
Section 2.2. The crowding distance represents the quality of the solution in terms
of diversification. For more information on how these criteria are computed, we
refer the reader to [3].

At generation t, the three steps are:
Step 1 - Initialization. Create the population Rt by combining the parent

and offspring populations. Compute the rank of the solutions in Rt and identify
all the non-dominated fronts F = (F1,F2, ...). Compute the crowding distance
of the solutions within each non-dominated front.

Step 2 - Parent population selection. Create the parent population for
next generation Pt+1 by selecting the N solutions from population Rt. Between
two solutions with different ranks, we prefer the solution with the lowest rank. If
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both solutions belong to the same front, we prefer the solution with the lowest
crowding distance.

Step 3 - Offspring creation. Create offspring population Qt+1 from Pt+1.
Details are given in Algorithm 1. The tournament operator is binary tournament,
as described in [3]. Two solutions are selected at random, the solution with lowest
rank is selected, or with lowest crowding distance if there is a tie. The crossover
and mutation operators are discussed in Section 3.3. The repair and evaluation
procedure is discussed in Section 3.4.

Algorithm 1 Offspring creation

Data: Parent population P , mutation rate µ
Result: Offspring population Q
1: Q← ∅;
2: while |Q| ≤ N do
3: p1 ← tournament(P );
4: p2 ← tournament(P );
5: s← crossover(p1, p2); (See Section 3.3)
6: if rand() < µ then
7: s← mutate(s); (See Section 3.3)
8: end if
9: s← repair and evaluate(s); (See Section 3.4)

10: Q← Q ∪ {s};
11: end while
12: return Q

3.2 Encoding

We based the implementation of the NSGA-II algorithm for our problem on a
genetic algorithm proposed for the mono-objective version of the APP with a
homogeneous fleet of vehicles [8].

A solution s is represented by an array of integers, representing the order
in which assets are visited for each vehicle. The route of a vehicle always starts
at a depot and ends at the sink node. For instance, there are three vehicles
in solution [1, 2, 6, 4, 11, 1, 5, 7, 3, 11, 1, 7, 3, 11], the route of the first vehicle is
(1 → 2 → 6 → 4 → 11), the second (1 → 5 → 7 → 3 → 11) and the last
(1→ 7→ 3→ 11).

We note Psi the set of vehicles assigned to asset i in solution s, and Psi the
set of available vehicles not assigned to asset i in solution s.

3.3 Operators

Valid crossover operator (CXVAL). This crossover operator between two
solutions s1 and s2 selects a vehicle at random. The route for this vehicle in
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s1 is cut after a random asset ik. The route for this vehicle in s2 is also cut,
after asset jl. The offspring route for this vehicle is constructed by the taking
the part of the route up to, and including, asset ik in s1 first, and then the
part of the route after asset jl in s2. For example, suppose we have two routes
(i1 → i2 → i3 → i4 → i5) and (j1 → j2 → j3 → j4 → j5 → j6), and assume the
cuts happen after assets i3 and j4 respectively, indicated in bold. The resulting
route would be (i1 → i2 → i3 → j5 → j6). The route of the second vehicle is
cut in a way such that arc (ik, jl+1) is a valid arc. This crossover may result in
duplicate assets in the route of a vehicle; we only keep the first occurrence of an
asset to fix this issue.

Time crossover operator (CXTIM). This crossover operator between two
solutions s1 and s2 selects a time at random within the time horizon. The routes
for the vehicles in s1 are cut when the start time of service of the asset exceeds
the chosen time, and represent the first part of the offspring routes. We then cut
the routes of the vehicles in s2 such that there is a valid arc between the last
asset of the first part of the route and the first asset of the second part of the
route.

Single-change operators. We define two different mutation operators that
perform a single change on the solution, with same probability of being used: an
insertion operator and a removal operator.

Insertion operator. The insertion operator adds one randomly selected asset to
the route of one or multiple vehicles. An asset is selected at random. The asset
is added at a random valid position in the route of vehicles, taken in a random
order, until the resource requirement of the asset is met.

Removal operator. The removal operator removes one randomly selected asset
from the route of one or multiple vehicles. An asset is selected at random. The
asset is removed from the route of all the vehicles.

Multi-change operator. We define a mutation operator that performs multi-
ple changes on the solution, first removing multiple assets from the solution in
the destruction phase, then inserting multiple protected assets in the construc-
tion phase.

During the destruction phase, the operator randomly selects d assets to be
removed from the current solution. The number of assets removed is randomly
selected between 1 and dmax. The destruction parameter dmax is initially set to 3.
If there is no improvement on the optimal Pareto front F1, its value is increased,
and resets to 3 when an improvement is found. In the random selection process,
we can assign weights to the assets in order to favor removing assets that induce
most deviation. We note w−i the weight associated to asset i. The probability
of selecting asset i to be removed is thus p−(i) = w−i /

∑
i

w−i . If w−i = 1 for all
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assets, we have fully random behavior. Alternatively, we can use a weight based
on the deviation induced by the removal of asset i from solution s, with γ a
parameter to be determined:

w−i =
(
1 +max(0, |Psi | − |Psi |)

)γ
(1)

During the construction phase, the operator uses a Best Insertion Heuristic
(BIH) to insert a subset of assets to the current solution. The number of assets
to add is chosen randomly between d and d+ cmax. The construction parameter
cmax is initially set to 3. The assets to be inserted are randomly selected. We
can assign weights to the assets in the selection process. We note w+

i the weight
associated to asset i. We can use a weight based on the profit vi associated with
the protection of asset i and a lower bound on the deviation necessary for the
protection of the asset nb+i , with α and β parameters to be defined:

w+
i = vαi /(1 + nb+i )β (2)

We want to add each asset to the route of enough vehicles for the resource
protection to be met. We also want to minimize the number of vehicles we use to
protect the asset. As we do not know how many vehicles will be required to meet
the resource requirement, we will generate multiple insertion patterns and select
the one minimizing our criterion. We detail the process in Algorithm 2. In order
to account for the deviation from the pre-disruption routes, we first select the
vehicles for which the asset is in the pre-disruption route. If these vehicles are
not sufficient to meet the resource requirement, we continue the process with the
remaining vehicles. We select the vehicles in a random order, until the protection
requirement is met.

Adaptive parameters. The multi-change operator relies on parameters α, β
and γ to control the relative importance of the different factors when associating
weights to assets. They are first initialized with α = 1, β = 1 and γ = 0.5,
and then adaptively tuned during the offspring creation phase. We generate M
offspring solutions with slightly different values of α, β and γ. The values leading
to the best offspring subpopulation are recorded to be used in the next iteration.
All the offspring solutions generated are considered in the offspring population
Q of the current step.

3.4 Repair and evaluation procedure

A solution is represented by the route of each vehicle. It is sufficient to know the
routes of the vehicles to compute the deviation from the pre-disruption routes.
However, we cannot determine which assets are effectively protected: we must
check if it is possible to synchronize the visits of all assigned vehicles within
the time window of the asset, and if the resource requirement is met by these
vehicles.

Some solutions are not feasible. For instance, two vehicles may visit two assets
in a different order, thus causing the synchronization to be impossible.
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Algorithm 2 Construction: Add an asset

Data: Solution S, asset k, number of insertion patterns nb p
Result: A solution that protects asset k, if possible
1: if the available vehicles cannot meet the resource requirement then
2: return S
3: end if
4: for cpt = 1...nb p do
5: Vcpt ← ∅; {Set of selected vehicles at iteration cpt}
6: costcpt = 0;
7: Determine a random order on the vehicles that prioritizes vehicles in PΦk
8: for each vehicle p following the previously defined order do
9: if there is a valid position in the route of vehicle p then

10: Vcpt ← Vcpt
⋃{p}

11: costcpt ← costcpt + 1
12: if vehicles in Vcpt meet the resource requirement of asset k then
13: Begin new insertion pattern (next cpt)
14: end if
15: end if
16: end for
17: end for
18: Select set of vehicles V∗ with lowest cost
19: Insert asset k in the routes of vehicles in V∗ in solution S
20: return S

Our repair procedure aims at finding the best subroutes of the solution, to
make it feasible and maximize total protected value. We do not modify the
order in which assets are visited by a vehicle, nor do we add new assets to the
routes. The repair procedure determines which assets can actually be protected,
thus contributing to the total protected value. It also gives data to correct the
deviation, if unprotected assets have been added to the route of a vehicle for
instance. At the end of the repair procedure, we know the value of the two
objective functions for the solution we have just repaired. Hence, we can use the
repair procedure as the evaluation procedure for our solutions. By doing so, we
also ensure that all the solutions we consider are feasible.

We propose two different MIPs used for repairing and evaluating solutions
for our problem. We note Pi the set of vehicles that have asset i in their route.
We note Xp the set of arcs (ik, il) between assets in the route of vehicle p, with
k < l.

Asset penalization. The first MIP tries to find a feasible solution from the
given routes. Assets can be visited outside of their time windows, but these assets
cannot be protected. Infeasibilities are lifted by removing assets entirely from
the solution.

We define three sets of decision variables:

– Binary variables Yi, set to 1 if asset i is protected. Asset i is protected when
service starts within its time window and its resource requirement is met.
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– Binary variables θi, set to 1 if asset i is removed from the solution.
– Continuous variables Si, that represent the start time of service of asset i.

Maximize
∑

i

viYi (3)

(1− θi)
∑

p

capp ≥ riYi ∀i ∈ V a (4)

Si + tijp + ai ≤ Sj +M1(θi + θj) ∀p ∈ P, (i, j) ∈ Xp (5)

oi −M2(1− Yi) ≤ Si ≤ ci +M2(1− Yi) ∀i ∈ V a (6)

Yi ∈ {0, 1}, θi ∈ {0, 1}, Si ∈ R ∀i ∈ V a (7)

Objective function (3) maximizes the total protected value.
Constraints (4) ensure that the protection requirement is met for protected

assets. Assets that have been removed from the solution (with θi = 1) cannot
be protected.

Constraints (5) set correct start time of service for assets i and j when asset i
is visited by the vehicle before asset j. The order in which the assets are visited is
fixed within the solution. However, as assets can be removed, we need to consider
every pair of assets (i, j) visited by the vehicle such that asset i is visited before
asset j.

Constraints (6) ensure that a protected asset is visited within its time win-
dow. Constraints (7) define the domain of the decision variables.

Assignment penalization. The second MIP tries to find a feasible solution
from the given routes. Infeasibilities are lifted by removing assets from the routes
of individual vehicles.

We use binary variables Yi and continuous variables Si. We replace variables
θi by variables θpi, set to 1 if asset i is removed from the route of vehicle p.

Maximize
∑

i

viYi (8)

∑

p∈Pi

(1− θpi)capp ≥ riYi ∀i ∈ V a (9)

Si + tijp + ai ≤ Sj +M1(θpi + θpj) ∀p ∈ P, (i, j) ∈ Xp (10)

Yi + θpi ≥ 1 ∀p, ∀i ∈ V a (11)

oi −M2(1− Yi) ≤ Si ≤ ci +M2(1− Yi) ∀i ∈ V a (12)

Yi ∈ {0, 1}, Si ∈ R ∀i ∈ V a (13)

θpi ∈ {0, 1} ∀i ∈ V a, p ∈ Pi (14)

Objective function (8) maximizes the total protected value.
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Constraints (9) ensure that the protection requirement is met for protected
assets. If asset i is removed from the route of the vehicle (with θpi = 1), the
vehicle does not contribute to the protection.

Constraints (10) set correct start time of service for assets i and j when asset
i is visited by the vehicle before asset j, similarly to constraints (5).

Constraints (11) ensure that unprotected assets are removed from the routes
of all vehicles.

Constraints (12) ensure that a protected asset is visited within its time win-
dow. Constraints (13) and (14) define the domain of the decision variables.

Local search. After repairing a solution, we explore its neighborhood to find a
dominating solution. We base our local search on the MIP used in the ε-constraint
method for the D-APP introduced in [13]. We use the MIP that maximizes total
protected value with deviation limited to the value of the deviation of the solution
we are considering. This solution is used as a warm-start for the MIP. We set a
high relative gap tolerance in our solver, meaning that the resolution will stop
before optimality is proven. For example, with a tolerance of 0.05, a solution is
returned when it is proved to be within 5% of optimal.

4 Computational results

We carried out computational testing on a computer with an Intel Core i7-8550U
processor and 8 GB of RAM. We implemented the method in Julia.

We generated 10 benchmark instances1, following the guidelines provided by
Merwe et al.[9]. Each instance has 100 assets randomly distributed within a 80
km by 80 km grid. Instances of less than 100 assets are created using a subset
of the 100-asset instances.

In order to evaluate our algorithm performance, we will use a quality indicator
to compare approximate PFs: the hypervolume (HV) [16]. The hypervolume (or
S-volume) is widely used in multi-objective optimization as we can compute it
without knowing the optimal PF. We suppose, without loss of generality, that
we want to maximize objective function f1 and minimize objective function f2.
The hypervolume requires two reference points in order to be computed: it is
important to use the same reference points when we compare two approximate
fronts. For a set of approximate fronts, the references points called nadir and ideal
are defined as nadir = (fmin1 , fmax2 ) and ideal = (fmax1 , fmin2 ), where fmini and
fmaxi , i = 1, 2 refer to the minimum and maximum values of objective functions
f1 and f2 encountered in the set of approximate fronts. Let Λ(ai) be the size of
the rectangular area ai constructed with a solution si from an approximation
set A and the nadir as corners. For approximate set A, we compute the HV as
follows:

1 See https://www.hds.utc.fr/p̃enaquen/dokuwiki/doku.php for the detailed instances
and pre-disruption routes.
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HV (A) =

Λ

(
⋃
ai∈A

ai

)

(fmax1 − fmin1 )(fmax2 − fmin2 )
(15)

4.1 Mutation rate tuning

In this section, we want to test the influence of the mutation rate µ on the output
of our algorithm. We launched the algorithm with a time limit of 60 seconds on
all our benchmark instances with 30, 40, 50 and 60 assets, with two different
vehicle breakdowns as the disruption.

Based on preliminary tuning work, we used fixed values for some of our
parameters. The population size is set to N = 100. We use the time crossover
operator as crossover operator and multi-change operator as mutation operator.
For the choice criteria w−i and w+

i , the parameters are set to α = 1.0, β = 0.5 and
γ = 1.0. Destruction and construction parameters cmax and dmax are initially set
to 3. The initial population is generated by applying the multi-change operator
with high cmax and dmax values on the solution representing the initial routes.

We report in Figure 1 the average gap between the hypervolume of the non-
dominated front F1 obtained with each mutation rate and the hypervolume of
the best known Pareto front.
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Fig. 1. Average gap between the front obtained by NSGA-II and best known front,
based on mutation rate µ.

We can see that our mutation operator impacted the quality of the front
we generated. We obtained the worst results when the mutation operator was
disabled (µ = 0), with a gap superior to 58%. The gap decreased when µ in-
creased up to 0.6, from 11 to 4% on average. The gap stabilized for µ = 0.7 and
deteriorated around 5% for higher mutation rates.
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4.2 Performance analysis

In this section, we test the influence of our evaluation models and operators,
and the impact of our additional components. Following preliminary work, we
chose not to consider the valid crossover operator (CXVAL). Hence, we will
only present results using the time crossover operator (CXTIM). We will first
compare the results obtained using our two different evaluation models, with our
single-change operators and our multi-change operator. Then, we will evaluate
the impact of the adaptive scheme and the local search procedure we presented.

We launched our NSGA-II algorithm with the different sets of operators for
each of our ten benchmark instances with 30, 40, 50 and 60 assets, and two
different random vehicle breakdowns as the disruption. We used the parameters
presented in Section 4.1, and set the mutation rate µ = 0.6.

Table 1 shows the results of NSGA-II within a time limit of 300 seconds. For
each evaluation model (shown in row ”Eval.”) and operator (shown in row ”Op-
erator”) combination, we give the average hypervolume of the non-dominated
front F1 we obtained. In the last column ”ε−300”, we indicate the hypervolume
of the front obtained using the ε-constraint method with the model introduced
in [13], with a 300-second time limit. Due to the time limit, this method does
not always yield the full optimal Pareto front.

Table 1. Average hypervolume of fronts obtained by NSGA-II in 300 seconds

Eval. Asset penalization Assignment penalization ε− 300

Operator Single-change Multi-change Single-change Multi-change

n = 30 73.2 % 78.0 % 74.1 % 77.7 % 82.3 %

40 70.2 % 73.0 % 70.5 % 73.4 % 78.5 %

50 67.4 % 70.1 % 69.1 % 71.9 % 68.7 %

60 66.2 % 65.9 % 68.0 % 67.4 % 54.4 %

We can see that the second evaluation model on average gave fronts with
higher hypervolume on average than the first model for the same operators. For
instances with 30, 40 and 50 assets, the multi-change operator performed better
than the single-change operators. The multi-change operator offers more stable
results than the single-change operators, and find solutions with higher profit.
For larger instances, we obtain better fronts on average than the ε− constraint
method within the same time limit.

Based on Table 1, we will consider the second evaluation model with multi-
change operator to evaluate our additional components. We performed a param-
eter analysis similar to Section 4.1 to determine good values for our adaptive
method and local search parameters. We set the initial population to N = 50,
and offspring population to M = 50/4. For the local search, we apply it to 5% of
the solutions, with a relative gap tolerance of 0.05. Each model is run five times
on each instance, to ensure the robustness of our results.

256



Title Suppressed Due to Excessive Length 13

Table 2 summarizes the results of our algorithm with no additional compo-
nent, with the adaptive parameters enabled and our local search procedure. It
shows the average value of the hypervolume found in the best run (HVmax) and
the average value in all the runs (HVavg).

Table 2. Comparison of the components of our NSGA-II implementation

Method No component Adaptive Local Search ε− 300

HVmax HVavg HVmax HVavg HVmax HVavg HV

n = 30 79.5% 77.6% 79.8% 77.8% 82.3% 81.9% 82.3%

40 75.8% 73.5% 75.8% 73.6% 79.9% 79.2% 79.1%

50 74.5% 72.2% 75.1% 73.1% 80.7% 79.5% 68.9%

60 70.5% 67.8% 73.0% 69.7% 80.0% 78.3% 56.4%

The adaptive component yielded similar results for instances with 30 and 40
assets and slightly better results for 50 and 60 assets when enabled. We obtained
significant improvements for all instances when enabling our local search proce-
dure, up 10% for instances with 60 assets on average. The local search procedure
also improved the stability of our algorithm, reducing the gap between the best
solution and the average solution for all size of instances.

5 Conclusion

NSGA-II is a popular algorithm for multi-objective heuristic resolution that has
proven efficient for multiple vehicle routing problems. We proposed an imple-
mentation of NSGA-II for the D-APP. Due to the numerous constraints that are
part of the D-APP, we introduced mutation and crossover operators based on
properties of the problem and MIPs to repair and evaluate solutions. It is the
first heuristic solution method dedicated to the D-APP. The approach can be
improved by defining operators that better take the deviation into account, and
finding faster procedures to repair and evaluate a solution.
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